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Let (Ω,F ,P) be a probability space carrying a Brownian motion (Bt)t≥0. Its canonical filtration
(Ft)t≥0 is supposed to satisfy the usual conditions: complete and right-continuous.

1 Wald’s optimal stopping for Brownian motion
In this section, we are interested in the following optimal stopping problem: for a measurable map
G : R+ → R, satisfying

∀x ∈ R, G(|x|) ≤ cx2 + d, (1)

for some d ∈ R, c > 0, tempt to maximize the expectation E [G(|Bτ |)− cτ ], over all integrable (Ft)-
stopping times. In the next section, we will see, as consequences, some estimates for expectation of
randomly-stopped Brownian motion and maximal inequalities.

1.1 Particular case: G : |x| 7→ |x|p, 0 < p ≤ 2

1.1.1 An important case G : |x| 7→ x2

Theorem 1.1 (Wald’s identity). For all integrable (Ft)-stopping time τ ,

E
[
B2
τ

]
= E[τ ].

Proof. Let τ be an integrable (Ft)-stopping time. Since (B2
t − t)t≥0 is a martingale, (B2

t∧τ − t∧ τ)t≥0

is also a martingale as a stopped martingale, so

∀t ≥ 0, E
[
B2
t∧τ
]

= E [t ∧ τ ] . (2)

Besides, (Bt∧τ )t≥0 is a square-integrable martingale with continuous paths, thus, by Doob’s inequality,
for all t ≥ 0,

‖ sup
s∈[0,t]

|Bs∧τ |‖2 ≤ 2
√

E [B2
t∧τ ] = 2

√
E[t ∧ τ ] ≤ 2

√
E[τ ].

By the monotone convergence theorem, we get E
[
sups≥0B

2
s∧τ
]
≤ 4E[τ ] < +∞. Thus, (B2

t∧τ )t≥0 is
uniformly integrable, being dominated by sups≥0B

2
s∧τ , which is integrable. Hence it converges almost

surely and in L1. Since τ is finite a.s. (it is integrable), the almost sure limit is B2
τ .

Then, taking the limit as t goes to +∞ in (2), by convergence in L1 for the left side, and monotone
convergence theorem for the right side, we get E [B2

τ ] = E[τ ].

Proposition 1.1. Let c > 0, we have,

sup
τ

E
[
B2
τ − cτ

]
=

{
+∞ if c ∈]0, 1[,
0 elsewhere,

where the supremum is taken over all integrable (Ft)-stopping times.

Proof. Let τ be an integrable (Ft)-stopping time. By Theorem 1.1, E [B2
τ − cτ ] = (1− c)E[τ ]. Three

situations need to be considered:

• If c ∈]0, 1[, with τ = n ∈ N, supτ E [B2
τ − cτ ] ≥ supn(1− c)n = +∞.

• If c = 1, supτ E [B2
τ − cτ ] = 0.

• If c ∈]1,+∞[, (1− c)E[τ ] ≤ 0, the supremum is reached with τ = 0.
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1.1.2 Case G : |x| 7→ |x|p, 0 < p < 2

We can then go further, taking any p ∈]0, 2[.

Theorem 1.2. Let 0 < p < 2 and c > 0, we have,

sup
τ

E [|Bτ |p − cτ ] =
2− p
p

( p
2c

)p/(2−p)
,

where the supremum is taken over all integrable (Ft)-stopping times.

The optimal stopping time is τp,c = inf

{
t ≥ 0, |Bt| =

( p
2c

)1/(2−p)
}
.

Remark 1.1. τp,c is an integrable stopping time: we show that the almost surely finite stopping time
Tx = inf{t ≥ 0, |Bt| = x} = τx ∧ τ−x, where τx = inf{t ≥ 0, Bt = x}, is integrable. One will be able

to conclude by taking x =
( p

2c

)1/(2−p)
.

Since, Tx ∧ n is bounded, it is integrable. By Theorem 1.1, Tx being finite, we get by the monotone
convergence theorem E

[
B2
Tx∧n

]
= E[Tx ∧ n] −→

n→+∞
E[Tx].

Besides, E
[
B2
Tx∧n

]
= x2P(Tx ≤ n) + E [B2

n1Tx>n]. Since Tx is finite a.s., P(Tx ≤ n) −→
n→+∞

1, then, by

dominated convergence theorem (using |B2
n1Tx>n| ≤ x2), E[B2

Tx∧n] −→
n→+∞

x2. Thus E[Tx] = x2 < +∞.

Proof. Call Vτ (p, c) = E [|Bτ |p − cτ ], whenever τ is a stopping time. Let τ be an integrable (Ft)-
stopping time. By Theorem 1.1, we get

Vτ (p, c) = E
[
|Bτ |p − cB2

τ

]
=

∫
R
(|x|p − cx2)dFBτ (x),

where FBτ is the cumulative distribution function of Bτ . We maximize

Dp,c : R → R
x 7→ |x|p − cx2.

It is an even function, so it suffices to maximize it on R+. Dp,c is differentiable on R+ and D′p,c : x 7→

pxp−1 − 2cx. Since lim
x→∞

Dp,c(x) = −∞, Dp,c reaches its maximum on R at x = ±
( p

2c

)1/(2−p)
. As a

consequence,

Vτ (p, c) =

∫
R
Dp,c(x)dFBτ (x) ≤ Dp,c

(( p
2c

)1/(2−p)
)

=
2− p
p

( p
2c

)p/(2−p)
.

But, using the fact that Bτp,c ∈
{
±
( p

2c

)1/(2−p)
}

a.s. and Dp,c is even, we get

Vτp,c(p, c) = E
[∣∣Bτp,c

∣∣p − cB2
τp,c

]
= Dp,c

(
−
( p

2c

)1/(2−p)
)

P

(
Bτp,c = −

( p
2c

)1/(2−p)
)

+Dp,c

(( p
2c

)1/(2−p)
)

P

(
Bτp,c =

( p
2c

)1/(2−p)
)

= Dp,c

(( p
2c

)1/(2−p)
)

=
2− p
p

( p
2c

)p/(2−p)
.

Remark 1.2. If p ∈]2,+∞[, we can adapt the latter proof to find infτ E [|Bτ |p − cτ ], where the infimum
is taken over all integrable (Ft)-stopping times: we minimize

D̃p,c : R → R
x 7→ |x|p − cx2.
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It is an even function, so it suffices to minimize it on R+. D̃p,c is differentiable on R+ and D̃′p,c :

x 7→ pxp−1 − 2cx. Since lim
x→∞

D̃p,c(x) = +∞, D̃p,c reaches a minimum on R. Thus, D̃p,c reaches its

minimum at x = ±
( p

2c

)1/(2−p)
. As a consequence,

Vτ (p, c) ≥ D̃p,c

(( p
2c

)1/(2−p)
)

=
2− p
p

( p
2c

)p/(2−p)
.

Thus
inf
τ

E[|Bτ |p − cτ ] ≥ 2− p
p

( p
2c

)p/(2−p)
,

where the infimum is taken over all integrable (Ft)-stopping times. And as in the preceding proof,
the optimal stopping time is τp,c.

1.2 General case

With the same method as above, we have

Theorem 1.3. Let d ∈ R, c > 0 and let G : R+ → R be a measurable map, satisfying the boundedness
condition (1), then

sup
τ

E [G(|Bτ |)− cτ ] = sup
x∈R

(G(|x|)− cx2),

where the supremum is taken over all integrable (Ft)-stopping times.
The optimal stopping time is the hitting time by the absolute value of Brownian motion |B| of the
set of all maximum points of the map DG,c : x 7→ G(|x|)− cx2, when DG,c reaches a maximum on R,
i.e. τG,c = inf {t ≥ 0, |Bt| = argmax DG,c}.

Remark 1.3. We will see during the proof that if DG,c doesn’t reach a maximum on R, one can
only find an optimal sequence of integrable (Ft)-stopping times (Tr)r: supτ E [G(|Bτ |)− cτ ] =
lim

r→+∞
E [G(|BTr |)− cTr].

Proof. As in the next section, introduce Vτ (G, c) = E [G(|Bτ |)− cτ ], whenever τ is a stopping time.
Let τ be an integrable (Ft)-stopping time. By Theorem 1.1, we get

Vτ (G, c) = E
[
G(|Bτ |)− cB2

τ

]
=

∫
R
(G(|x|)− cx2)dFBτ (x).

We maximize
DG,c : R → R

x 7→ G(|x|)− cx2.

By the boudness condition (1), DG,c has an upper bound, we split into two cases:

• If DG,c reaches its maximum at x0 ∈ R, then Vτ (G, c) ≤ DG,c(x0).
By using the stopping time Tx0 , defined in Remark 1.1, since DG,c is even, doing as in the
previous section, we get

sup
τ

E [G(|Bτ |)− cτ ] = DG,c(x0).

• If DG,c reaches its maximum on ±∞, then for all x ∈ R, DG,c(x) ≤ lim
x→+∞

DG,c(x), thus

Vτ (G, c) ≤ lim
x→+∞

DG,c(x).
By using the stopping time Tr, defined in Remark 1.1, for r > 0, using the fact that DG,c is
even, we get,

VTr(G, c) = E
[
B2
Tr − cB

2
Tr

]
= DG,c(−r)P (BTr = −r) +DG,c(r)P (BTr = r)

= DG,c(r).
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Hence, ∀r > 0, supτ E [G(|Bτ |)− cτ ] ≥ DG,c(r). Taking the limit as r goes to +∞, this yields
to supτ E [G(|Bτ |)− cτ ] ≥ lim

x→+∞
DG,c(x). Thus, supτ E[G(|Bτ |)− cτ ] = lim

x→+∞
DG,c(x).

Remark 1.4. If the boundedness condition (1) is not satisfied, then supx∈R(G(|x|) − cx2) could be
infinite. The equality still holds by doing as in the second case of the proof.

Remark 1.5. Adapting the latter proof and using Remark 1.2, we get

inf
τ

E[G(|Bτ |)− cτ ] = inf
x∈R

(G(|x|)− cx2),

where the infimum is taken over all integrable (Ft)-stopping times. The optimal stopping time is the
hitting time by the absolute value of Brownian motion |B| of the set of all minimum points of the
map DG,c : x 7→ G(|x|)− cx2, when DG,c reaches a minimum on R.

2 Some consequences

2.1 Estimates for expectation of stopped Brownian motion

Using Theorems 1.1, 1.2 and Remark 1.2, we get

Theorem 2.1. For all integrable (Ft)-stopping time τ ,

• if p ∈]0, 2[,
E [|Bτ |p] ≤ E[τ ]p/2;

• if p = 2,
E
[
B2
τ

]
= E[τ ];

• if p ∈]2,+∞[,
E [|Bτ |p] ≥ E[τ ]p/2.

Proof. Let τ be an integrable (Ft)-stopping time.

• By Theorem 1.2, we have, for all c > 0,

E [|Bτ |p] ≤ cE[τ ] +
2− p
p

( p
2c

)p/(2−p)
.

Then
E [|Bτ |p] ≤ inf

c>0

(
cE[τ ] +

2− p
p

( p
2c

)p/(2−p))
.

Let f : c 7→ cE[τ ] +
2− p
p

( p
2c

)p/(2−p)
. f is differentiable on R∗+, f ′ : c 7→ E[τ ] −

( p
2c

)2/(2−p)
.

Thus f ′(c) ≥ 0 ⇐⇒ c ≥ p

2
E[τ ](p−2)/2. So f reaches a minimum at

p

2
E[τ ](p−2)/2 and

f
(p

2
E[τ ](p−2)/2

)
= E[τ ]p/2. It shows that

E[|Bτ |p] ≤ E[τ ]p/2.

Remark 2.1. This comes also from Theorem 1.1 and Jensen’s inequality, using x 7→ xp/2 which
is concave.

• We have already proved this in Theorem 1.1.
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• As stated in Remark 1.2, for all c > 0,

E [|Bτ |p − cτ ] ≥ 2− p
p

( p
2c

)p/(2−p)
,

then
E [|Bτ |p] ≥ sup

c>0

(
cE[τ ] +

2− p
p

( p
2c

)p/(2−p))
.

Define the same f as above. Now, we have

f ′(c) ≥ 0 ⇐⇒ c ≤ p

2
E[τ ](p−2)/2.

so f reaches a maximum and we conclude as in the first point that

E[|Bτ |p] ≥ E[τ ]p/2.

Remark 2.2. This comes also from Theorem 1.1 and Jensen’s inequality, using x 7→ xp/2 which
is convex.

With the same method as above, using Theorem 1.3 and Remark 1.5, we get

Theorem 2.2. Let G : R+ → R be a measurable map, then for all integrable (Ft)-stopping time τ ,

sup
c>0

(
cE[τ ] + inf

x∈R
(G(|x|)− cx2)

)
≤ E [G(|Bτ |)] ≤ inf

c>0

(
cE[τ ] + sup

x∈R
(G(|x|)− cx2)

)
.

Remark 2.3.

• If τ is not integrable, the upper bound equals +∞ so the right-inequality is trivial.

• As seen in Remark 1.4, we do not need the boundedness condition (1).

Remark 2.4. Under the hypothesis of the theorem, if H : x 7→ G(
√
x) is concave, then by Jensen’s

inequality and Wald’s identity, E [G (|Bτ |)] ≤ G
(√

E[τ ]
)
. Using that the concave-biconjugate ˜̃H

of H is a concave function which is greater than H, one can find directly the right inequality of
Theorem 2.2. "Concave" being changed into "convex" and "greater" into "lower", one can find the
left inequality. See [GP] for details.

Thanks to the change of time theorem (Theorem A.1), we can extend Theorem 2.2 to local
martingales:

Theorem 2.3. Let M be a continuous local martingale starting at 0 and let G : R+ → R be a
measurable function. Then for any t > 0 for which E[〈M,M〉t] < +∞, we have

sup
c>0

(
cE[〈M,M〉t] + inf

x∈R
(G(|x|)− cx2)

)
≤ E[G(|Mt|)] ≤ inf

c>0

(
cE[〈M,M〉t] + sup

x∈R
(G(|x|)− cx2)

)
.

Proof. Using the Dambis-Dubins-Schwarz’s Brownian motion β for M , we have, for t > 0 for which
E[〈M,M〉t] < +∞,

E[G(|Mt|)] = Ẽ[G(|Mt|)] = Ẽ
[
G
(∣∣β〈M,M〉t

∣∣)]
≤ inf

c>0

(
cẼ[〈M,M〉t] + sup

x∈R
(G(|x|)− cx2)

)
= inf

c>0

(
cE[〈M,M〉t] + sup

x∈R
(G(|x|)− cx2)

)
,

using Theorem 2.2.
One can do the same for the other inequality.
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Optimality in the bound:

In Theorem 2.2, the inequalities are sharp:

Theorem 2.4. Let G : R+ → R be a measurable map. Suppose that there exists c0 > 0 such that
DG,c0 : x 7→ G(|x|)− c0x

2 reaches a maximum over R, then

sup
τ

(
E [G(|Bτ |)]− inf

c>0

(
cE[τ ] + sup

x∈R
(G(|x|)− cx2)

))
= 0,

where the supremum is taken over all integrable (Ft)-stopping times.
Suppose that there exists c0 > 0 such that DG,c0 : x 7→ G(|x|)− c0x

2 reaches a minimum over R, then

inf
τ

(
E [G(|Bτ |)]− sup

c>0

(
cE[τ ] + inf

x∈R
(G(|x|)− cx2)

))
= 0,

where the infimum is taken over all integrable (Ft)-stopping times.

Proof.

• We denote aG,c a point where DG,c reaches its maximum (possibly infinite) over R̄. Call σc =
inf{t ≥ 0, |Bt| = aG,c}. By hypothesis, aG,c0 ∈ R and σc0 is an integrable stopping time. Thus
we have

0 = E
[
G
(∣∣Bσc0

∣∣)− c0σc0
]
−DG,c0(aG,c0)

= E
[
G
(∣∣Bσc0

∣∣)− c0σc0
]
− sup

x∈R

(
G (|x|)− c0x

2
)

≤ sup
c>0

(
E
[
G
(∣∣Bσc0

∣∣)− cσc0]− sup
x∈R

(
G (|x|)− cx2

))
≤ sup

τ
sup
c>0

(
E [G (|Bτ |)− cτ ]− sup

x∈R

(
G (|x|)− cx2

))
≤ sup

τ

(
E [G (|Bτ |)] + sup

c>0

(
−cE[τ ]− sup

x∈R

(
G (|x|)− cx2

)))
≤ sup

τ

(
E [G (|Bτ |)]− inf

c>0

(
cE[τ ] + sup

x∈R

(
G (|x|)− cx2

)))
,

where the supremum is taken over all integrable (Ft)-stopping times. The other inequality
comes from Theorem 2.2.

• One can adapt the first point in order to get the other part of the theorem.

We deduce from this that the inequalities in Theorem 2.1 are sharp:

Corollary 2.5.

• If p ∈]0, 2[,
sup
τ

(
E [|Bτ |p]− E[τ ]p/2

)
= 0,

where the supremum is taken over all integrable (Ft)-stopping times.

• If p = 2, for all integrable (Ft)-stopping time τ ,

E
[
B2
τ

]
= E[τ ].

• If p ∈]2,+∞[,
inf
τ

(
E [|Bτ |p]− E[τ ]p/2

)
= 0,

where the infimum is taken over all integrable (Ft)-stopping times.
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Proof. Using G : x 7→ |x|p, for p ∈ R and Theorem 2.4:

• If p ∈]0, 2[, as stated in the proof of Theorem 1.2, for all c > 0, Dp,c : x 7→ |x|p − cx2 reaches a
maximum over R. The infimum over c > 0 has been computed in the proof of Theorem 2.1.

• If p = 2, we have already proved this in Theorem 1.1.

• If p ∈]2,+∞[, as stated in Remark 1.2, for all c > 0, Dp,c : x 7→ |x|p − cx2 reaches a minimum
over R. The supremum over c > 0 has been computed in the proof of Theorem 2.1.

2.2 Dubins-Jacka-Schwarz-Shepp-Shiryaev maximal inequalities for ran-
domly stopped Brownian motion

Proposition 2.1. If τ is an integrable (Ft)-stopping time, then

E

[
max
0≤t≤τ

Bt

]
≤
√

E[τ ].

This is a sharp inequality.

Proof. Let us write for t ≥ 0, St = max0≤s≤tBs.

• Let c > 0. We first define for t ≥ 0, Zt = c ((St −Bt)
2 − t) +

1

4c
. It is a martingale:

– for all t ≥ 0, Zt is Ft-measurable.

– for all t ≥ 0, E [|Zt|] ≤ cE[(St − Bt)
2] + ct +

1

4c
= cE[B2

t ] + ct +
1

4c
= 2ct +

1

4c
< +∞,

using the fact that (St −Bt) has the same law as |Bt| (see Proposition A.1).

– Let 0 ≤ s ≤ t,

E[Zt − Zs|Fs] = cE
[
(St −Bt)

2 − (Ss −Bs)
2 − t+ s

]
= cE

[
B2
t −B2

s − t+ s
]

= 0,

using again the fact that (St −Bt) has the same law as |Bt|.

Let σ be a bounded (Ft)-stopping time, since E[Bσ] = 0 (see Proposition A.2), we get

E[Sσ − cσ] = E[Sσ −Bσ − cσ] ≤ E[Zσ] = E[Z0] =
1

4c
,

using :

– ∀x ∈ R, ∀t ≥ 0, x− ct ≤ c(x2 − t) +
1

4c
,

– and the Doob’s optional stopping theorem for martingale with a bounded stopping time.

Thus E[Sσ] ≤ infc>0

(
1

4c
+ cE[σ]

)
=
√

E[σ].

Let now τ be an integrable (Ft)-stopping time. Applying what we have just shown to the
stopping time τ ∧ t, for t ≥ 0, we get

∀t ≥ 0, E[Sτ∧t] ≤
√

E[τ ∧ t].

We conclude by the monotone convergence theorem, since (St)t≥0 is non decreasing.
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• Let a ∈ R. We take τ = inf{t ≥ 0, St − Bt = a} which is equal in law to Ta = inf{t ≥
0, |Bt| = a}, by Proposition A.1. Then, using the integrability of τ and Proposition A.2, we
get E[Sτ ] = a+ E[Bτ ] = a. Since E[τ ] = E[Ta] = a2 (see Remark 1.1), we have the equality.

Remark 2.5. We can extend this inequality to any continuous local martingaleM starting at 0, using
β, the Dambis-Dubins-Schwarz’s Brownian motion of M (see Theorem A.1). Let t ≥ 0 such that
E[〈M,M〉t] < +∞, then,

E

[
max
0≤s≤t

Ms

]
= E

[
max
0≤s≤t

β〈M,M〉s

]
= E

[
max

0≤s≤〈M,M〉t
βs

]
≤
√

E[〈M,M〉t].

Proposition 2.2. If τ is an integrable (Ft)-stopping time, then

E

[
max
0≤t≤τ

|Bt|
]
≤
√

2
√

E[τ ].

This is a sharp inequality.

Proof.

• Let τ be an integrable (Ft)-stopping time. For t ≥ 0, defineMt = E [|Bτ | − E [|Bτ |] |Ft∧τ ]. This
is a martingale:

– for all t ≥ 0, Mt is Ft∧τ -measurable so it is Ft-measurable.

– for all t ≥ 0,

E [|Mt|] = E [|E [|Bτ | − E [|Bτ |] |Ft∧τ ]|] ≤ E [E [||Bτ | − E [|Bτ |]| |Ft∧τ ]] = E [||Bτ | − E [|Bτ ||]]
≤ 2E [|Bτ |] ≤ 2

√
E [B2

τ ] ≤ 2
√

E[τ ] < +∞,

using Jensen’s inequality and Wald’s identity.

– Let 0 ≤ s ≤ t. We have, since Mt is Fτ measurable,

E[Mt|Fs] = E[E[Mt|Fτ ]|Fs] = E[Mt|Fs∧τ ] = E [E [|Bτ | − E [|Bτ |] |Ft∧τ ] |Fs∧τ ]
= E [|Bτ | − E [|Bτ |] |Fs∧τ ] = Ms.

It admits a modification which is right-continuous. But, using Jensen’s inequality, for all t ≥ 0,
we get

E[M2
t ] ≤ E

[
E
[
(|Bτ | − E [|Bτ |])2 |Ft∧τ

]]
= E

[
(|Bτ | − E [|Bτ |])2]

≤ E
[
B2
τ

]
− E [|Bτ |]2 ≤ E[τ ],

by Wald’s identity. The right-continuous martingale (Mt)t≥0 is then bounded in L2, hence
E[〈M,M〉∞] < +∞ and M2−〈M,M〉 is an uniformly integrable martingale (see [RZ, Chapter
IV, Propostion 1.23 p.108]). Then M2 − 〈M,M〉 converges a.s. and in L1 to M2

∞ − 〈M,M〉∞.
The martingale property and the L1 convergence yields to E[〈M,M〉∞] = E[M2

∞]. For all t ≥ 0,
E[〈M,M〉t] ≤ E[〈M,M〉∞] < +∞, so by the remark above

E

[
max
0≤s≤t

Ms

]
≤
√

E[〈M,M〉t] ≤
√

E[〈M,M〉∞] =
√

E[M2
∞].

Then by the monotone convergence theorem and using the uniform bound of the second moment
of M , we get

E

[
max
s≥0

Ms

]
≤
√

E[M2
∞] ≤

√
E (|Bτ | − E [|Bτ |])2.
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Since, (Bt∧τ )t≥0 is a martingale closed by Bτ ,

E

[
max
0≤t≤τ

|Bt|
]

= E

[
max
t≥0
|Bt∧τ |

]
≤ E

[
max
t≥0

E [|Bτ | |Ft∧τ ]
]
.

Thus we have

E

[
max
0≤t≤τ

|Bt|
]
≤ E

[
max
t≥0

Mt

]
+ E[|Bτ |] ≤

√
E (|Bτ | − E [|Bτ |])2 + E[|Bτ |]

≤
√

E[τ ]− E[|Bτ |]2 + E[|Bτ |],

using Wald’s identity. But g : x 7→
√

E[τ ]− x2 +x defined on
[
0,
√

E[τ ]
]
reaches its maximum

at
√

E[τ ]/2 so by Proposition 2.1,

E

[
max
0≤t≤τ

|Bt|
]
≤
√

2
√

E[τ ].

• Take τ2 = inf{t ≥ 0,max0≤s≤t |Bs|−|Bt| = a} for a > 0, one can show that it gives the equality.
See [DSS].

3 On Doob’s maximal inequalities for Brownian motion
Let τ be an integrable (Ft)-stopping time. The Doob’s maximal inequality states the sharp inequality

E

[
max
0≤t≤τ

B2
t

]
≤ 4E

[
B2
τ

]
.

One can wonder if there exists a similar sharp inequality for Brownian motion started at any point
x ∈ R+. Considering the optimal stopping problem,

V (x, s) = sup
τ

Ex,s [Sτ − cτ ] ,

where the expectation is taken with respect to the probability measure under which (St)t≥0 =
(max0≤r≤tB

2
r ∨ s)t≥0 starts at s and (Bt)t≥0 starts at x, one can show that

Ex

[
max
0≤t≤τ

B2
t

]
≤ 4Ex

[
B2
τ

]
− 2x2,

which is a sharp inequality. It can be extend to any power p > 1. See [GP2] for details.

A Appendix
Theorem A.1 (Change of time). If M is a local martingale starting at 0, with 〈M,M〉∞ = +∞
a.s., then there exists a Brownian motion (βt)t such that Mt = β〈M,M〉t, for all t ≥ 0. β is called the
Dambis-Dubins-Schwarz’s Brownian motion of M .

Proof. See [RZ, Chapter V, Theorem 1.6 p.181].

Remark A.1. Up to enlarge the probability space, we can remove the condition on the bracket in the
previous theorem:
(Ω̃, F̃ , (F̃t)t, P̃) is an enlargement of (Ω,F , (Ft)t,P) if there exists π : Ω̃ → Ω such that ∀t ≥
0, π−1(Ft) ⊂ F̃t and π(P̃) = P. A process X defined on Ω can be viewed as a process on Ω̃ with
X(ω̃) = X(ω), when ω = π(ω̃).
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Remark A.2. For a random variable X defined on Ω,

Ẽ[X] =

∫
Ω̃

X(π(ω̃))P̃(dω̃) =

∫
Ω

X(ω)P(dω) = E[X].

Proposition A.1. For all t ≥ 0, St −Bt
L
= |Bt|, where St = max0≤s≤tBs.

Remark A.3. Thanks to P. Lévy, we have more: (St−Bt)t≥0 has the same law as (|Bt|)t≥0. See [KS,
Chapter III, Theorem 6.17 p.210].

Proof. Let t ≥ 0. By the reflexion principle, the density of (St, Bt) is given by

ft : (a, b) 7→ 2(2a− b)√
2πt3

exp

(
−(2a− b)2

2t

)
1a>0,b<a.

Let u ≥ 0, with the change of variables (a, b) 7→ (a, a− b), we get

P(St −Bt ≥ u) =

∫
R2

1a−b≥u
2(2a− b)√

2πt3
exp

(
−(2a− b)2

2t

)
1a>0,b<adadb

=

∫
R2

1c≥u
2(a+ c)√

2πt3
exp

(
−(a+ c)2

2t

)
1a>0dadc

=

∫
R

1c≥u
2√
2πt3

exp

(
−c

2

2t

)
dc = 2P (Bt ≥ u) = P (|Bt| ≥ u) .

Proposition A.2. For all integrable (Ft)-stopping time τ , E[Bτ ] = 0.

Proof. Since (B2
t − t)t≥0 is a martingale, (B2

t∧τ − t ∧ τ)t≥0 is a martingale as a stopped martingale.
It implies that E [B2

t∧τ − t ∧ τ ] = E [B2
0∧τ − 0 ∧ τ ] = 0, hence

sup
t≥0

E
[
B2
t∧τ
]

= sup
t≥0

E[t ∧ τ ] ≤ E[τ ] < +∞.

The stopped martingale (Bt∧τ )t≥0 is then uniformly integrable, and since τ is a.s. finite (because it
is integrable), it converges almost surely and in L1 to lim

t→+∞
Bt∧τ = Bτ .

But, by the martingale property, E [Bt∧τ ] = 0 and by L1-convergence E[Bt∧τ ] −→
t→+∞

E[Bτ ]. We
conclude by the uniqueness of the limit.
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