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Abstract

We consider a particle moving in a one-dimensional potential, which is at first time-homogeneous.
The first part comes from an article from Nicolas Fournier and Camille Tardif [FT18]. We see the
asymptotic behaviour of the position process: it behaves as a Brownian motion for β ≥ 5, a stable
process for β ∈ [1, 5) and as an integrated symmetric Bessel process if β ∈ (0, 1). In the second part,
we study the time-inhomogeneous case. Starting from the velocity process studied by Yoann Offret in
his thesis [Off12], for the attractive case and above the critical line: 2β > α + 1, we prove that the
position process behaves asymptotically as a time-changed Brownian motion.
This document is the report of an internship done during the second year of master. It was supervised
by Mihai Gradinaru at the University of Rennes 1.
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Chapter 1

Introduction

In this paper, we consider a one-dimensional stochastic kinetic model driven by a Brownian motion.
Let us denote by Xt the one-dimensional process describing the position of a particle at time t ≥ 0,
having the speed Vt:

Xt = X0 +

∫ t

0
Vs ds.

The velocity process (Vt) is supposed to be a Brownian process in a potential U(t, v):

dVt = dBt −
1

2
∂vU(t, Vt) dt.

In the first part, the potentiel U is supposed to be independent of time and satisfying

∂vU(v) = −βϑ
′

ϑ
,

where β > 0 and ϑ : R→ (0,+∞) is an even function of class C2 satisfying lim
|v|→∞

|v|ϑ(v) = 1. All the

results of this part come from [FT18].
In the second part, the potential is supposed to depend on time and to verify

U(t, v) =


−2ρ

α+ 1

|v|α+1

tβ
, if α 6= −1,

−2ρ log(|v|)
tβ

, if α = −1.

Here ρ < 0, α ≥ 0, and β ∈ R are such that 2β− (α+ 1) > 0 in order to use results from [Off12]. What
is the asymptotic behaviour of the position process Xt/ε, as ε→ 0 ? We give an answer in the second
part.
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Chapter 2

Asymptotic behaviour of solution of a
time-homogeneous kinetic equation

2.1 Introduction and main results

Consider, for two random variables (X0, V0) and a Brownian motion (Bt)t≥0 independent from (X0, V0),
the stochastic kinetic model:

Vt = V0 +Bt −
β

2

∫ t

0
F (Vs) ds,

Xt = X0 +

∫ t

0
Vs ds,

(2.1)

where β > 0. Assume that the potential F is of the form

F = −ϑ
′

ϑ
, where ϑ : R→ (0,+∞) is an even function of class C2 satisfying lim

|v|→∞
|v|ϑ(v) = 1. (2.2)

In particular F is C1 and thus is locally Lipschitz. One can keep in mind the example F : v 7→ v

1 + v2

which comes from ϑ : v 7→ (1 + v2)−1/2. The system (2.1) could be seen as a model for a particle
motion in a one-dimensional potential.
One can observe that, since the drift and the diffusion coefficient are locally Lipschitz, then (2.1) has
a unique local strong solution and it is a Markov process (see [Theorem 3.1 p. 178 in WI81]).

Moreover,

Lemma 2.1.1. If it exists, the invariant measure µβ of the velocity process (Vt)t≥0 is solution of
1

2
µ′′β +

β

2
(Fµβ)′ = 0 in the sense of distributions. The unique (up to constant) solution is

µβ(dv) = cβ(ϑ(v))β dv, (2.3)

with c−1
β =

{ ∫
R[ϑ(v)]β dv < +∞ if β > 1,

1 if β ∈ (0, 1].

Proof. The infinitesimal generator of V is given by Lf(x) = −β
2
F (x)f ′(x) +

1

2
f ′′(x). The measure µβ

is invariant if and only if for all functions f ∈ D(L) ⊂ C∞(R),
∫
Lf(x)µβ(dx) = 0 (see [Prop 4.5 p.293

in WI81]). It is equivalent to say that 〈β
2

(Fµβ)′ +
1

2
µ′′β, f〉 = 0 for all f ∈ D(L) i.e.

1

2
µ′′β+

β

2
(Fµβ)′ = 0

in the sense of distributions.

Remark 2.1.1. µβ is a probability measure for β > 1, by Riemann criterion, using (2.2).

For a family ((Zεt )t≥0)ε≥0 of processes, the notation (Zεt )t≥0
f.d

=⇒ (Z0
t )t≥0 is used if, for all finite

subset S ⊂ [0,+∞), the vector (Zεt )t∈S converges in distribution towards (Z0
t )t∈S as ε → 0, and the
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notation (Zεt )t≥0
L

=⇒ (Z0
t )t≥0 is used if the convergence in distribution holds in the usual sense for

continuous processes.

The main results of this part are the following:

Theorem 2.1.1. Consider β > 0 and let (Vt, Xt)t≥0 be a solution to (2.1). Then, as ε converges to 0,

i) If β > 5, (
√
εXt/ε)t≥0

f.d
=⇒ (σββt)t≥0.

ii) If β = 5,
(√

ε

log ε
Xt/ε

)
t≥0

f.d
=⇒ (σ5βt)t≥0.

iii) If β ∈ (1, 5), ( α
√
εXt/ε)t≥0

f.d
=⇒ (σβS

(α)
t )t≥0, where α = (β + 1)/3.

iv) If β = 1, (|ε log ε|3/2Xt/ε)t≥0
f.d

=⇒ (σ1S
(2/3)
t )t≥0.

v) If β ∈ (0, 1), (
√
εVt/ε, ε

3/2Xt/ε)
L

=⇒
(
U

(1−β)
t ,

∫ t

0
U

(1−β)
s ds

)
t≥0

.

Here (βt)t≥0 is a Brownian motion, (S
(α)
t )t≥0 is a symmetric stable process with index α ∈ (0, 2)

such that E
[
exp(iuS

(α)
t )

]
= exp(−t |u|α) and (U

(δ)
t )t≥0 is a symmetric Bessel process of dimension

δ ∈ (0, 1). For each β ≥ 1 the constant σβ > 0 is defined by

• σ2
β = 8cβ

∫ +∞

0
ϑ−β(v)

[∫ +∞

v
uϑβ(u) du

]2

dv, if β > 5,

• σ2
5 =

4c5

27
,

• σαβ =
31−2α2α−1cβπ

Γ(α)2 sin(πα/2)
, with α = (β + 1)/3, if β ∈ (1, 5),

• σ
2/3
1 =

22/33−5/6π

Γ(2/3)2
.

Then one deduces the

Corollary 2.1.2. Using the same hypotheses and notations as in the previous theorem, if Ṽ is a
random variable with law µβ independent of X(β), then, as ε converges to 0,

i) If β > 5, for each t ≥ 0, (
√
εXt/ε, Vt/ε)

L
=⇒ (σββt, Ṽ ).

ii) If β = 5, for each t ≥ 0,
(√

ε

log ε
Xt/ε, Vt/ε

)
L

=⇒ (σ5βt, Ṽ ).

iii) If β ∈ (1, 5), for each t ≥ 0, ( α
√
εXt/ε, Vt/ε)

L
=⇒ (σβS

(α)
t , Ṽ ), where α = (β + 1)/3.

2.2 Starting point

Introduce first some functions defined on R:

• h : v 7→ (β + 1)
∫ v

0

1

ϑ(u)β
du. It is an odd, increasing, bijective function which solves h′′ = βFh′.

Integrating the equivalent given in (2.2), one gets h(v) ∼
|v|→∞

sgn(v) |v|β+1 and h−1(v) ∼
|v|→∞

sgn(v) |v|1/(β+1).
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• σ : z 7→ h′
(
h−1(z)

)
. It is an even function, bounded from below by some c > 0. Besides, using

the previous point, σ(z) ∼
|z|→∞

(β + 1) |z|β/(β+1).

• φ : z 7→ h−1(z)

σ2(z)
. Since h−1 is an odd function, φ is, too. Using the two previous equivalents, one

gets φ(z) ∼
|z|→∞

sgn(z) |z|(1−2β)/(β+1)

(β + 1)2
.

• g : v 7→ 2
∫ v

0
ϑ−β(x)

∫ +∞

x
uϑβ(u) du dx. It is an odd function (using the fact that ϑ is even and

that
∫

R
uϑβ(u) du = 0), satisfying the equation g′′(v)− βF (v)g′(v) = −2v.

• ψ : z 7→
(
g′
(
h−1(z)

))2
σ2(z)

, when β = 5. It is an even and bounded function satisfying ψ(z) ∼
|z|→∞

1

81 |z|
, thanks to the equivalent given in (2.2).

2.2.1 Reducing to the initial condition (X0, V0) = (0, 0).

One can make the proof of Theorem 2.1.1 easier, by noting that it suffices to prove it whenX0 = V0 = 0.

Lemma 2.2.1. i) There exists C > 0 such that, if V0 = 0, then for all t ≥ 0, E[V 2
t + |Vt|β+1] ≤

C(1 + t).

ii) Starting from any initial condition, the unique strong solution (Vt)t≥0 is recurrent.

iii) If Theorem 2.1.1 is true when X0 = V0 = 0 a.s. and β ≥ 1, then it is true for any initial
condition.

iv) When β ∈ (0, 1), it suffices to prove that (
√
εVt/ε)t≥0

L
=⇒ (U

(1−β)
t )t≥0 for V0 = 0 in order to

obtain Theorem 2.1.1 for any initial condition.

Proof. i) Set ` : v 7→ 2
∫ v

0
ϑ−β(x)

∫ x

0
ϑβ(u) dudx. ϑ is even, then so is `. Besides, ` satisfies

`′′(v)− βF (v)`′(v) = 2.

Integrating the equivalent given in (2.2) (it suffices to study at +∞ because ` is even), one gets
that there exists a constant cβ > 0 such that:

• if β > 1, `(v) ∼
|v|→∞

cβ |v|β+1,

• if β = 1, `(v) ∼
|v|→∞

cβv
2 log |v|,

• if β ∈ (0, 1), `(v) ∼
|v|→∞

cβv
2.

As a consequence, one can find a constant c > 0 such that, for any β > 0 and v ∈ R,
v2 + |v|β+1 ≤ c(`(v) + 1). Taking the expectation, one deduces E

[
V 2
t + |Vt|β+1

]
≤ c (E[`(Vt)] + 1).

Itô’s formula and (2.1) yield

`(Vt) =

∫ t

0
`′(Vs) dVs +

1

2

∫ t

0

(
2 + βF (Vs)`

′(Vs)
)

d〈V, V 〉s =

∫ t

0
`′(Vs) dBs + t.

Taking the expectation, one gets E [`(Vt)] = t. This concludes the proof.
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ii) The velocity process is a solution to a SDE with locally Lipschitz coefficients b = −βF/2 and
σ = 1. But, using (2.2),

I :=

∫ 0

−∞
exp

(
−
∫ x

0
β
ϑ′(s)

ϑ(s)
ds

)
dx =

∫ 0

−∞
exp (β ln(ϑ(0)/ϑ(x))) dx =

∫ 0

−∞

(
ϑ(0)

ϑ(x)

)β
dx = +∞

and, likewise,

J :=

∫ +∞

0
exp

(
−
∫ x

0
β
ϑ′(s)

ϑ(s)
ds

)
dx = +∞.

Thus, by [Proposition 5.22 p.345 in KS98], (Vt)t≥0 is a recurrent process.

iii) Step 1: Find a solution to (2.1) starting from (0, 0).
Assume β ≥ 1 and suppose that Theorem 2.1.1 holds when the initial condition is (0, 0). Let
(Vt, Xt)t≥0 be the solution of (2.1) starting from some (V0, X0). Set τ = inf{t ≥ 0, Vt =
0}. It is an almost surely finite stopping time by recurrence of V . Consider (V̂t, X̂t)t≥0 :=

(Vτ+t − Vτ , Xτ+t −Xτ )t≥0. Since (V,X) is a Markov process, by strong Markov property,
(
V̂ , X̂

)
is independent from τ . Moreover V̂τ = 0, X̂τ = 0,

V̂t = Vτ+t − Vτ = Bτ+t −Bτ −
β

2

∫ t

0
F (Vτ+s) ds

L
= Bt −

β

2

∫ t

0
F (V̂s) ds,

since Vτ = 0, and

X̂t = Xτ+t −Xτ =

∫ τ+t

τ
Vs ds =

∫ t

0
V̂s ds.

So, (V̂ , X̂) is solution to (2.1) starting at (0, 0). Hence, one knows that
(
v

(β)
ε X̂t/ε

)
t≥0

f.d
=⇒(

X
(β)
t

)
t≥0

, where the rate v(β)
ε and the limit process

(
X

(β)
t

)
t≥0

are given in the statement of

Theorem 2.1.1.
Step 2: For all t ≥ 0, v(β)

ε

∣∣∣Xt/ε − X̂t/ε

∣∣∣ P−→ 0.

Fix t ≥ 0. One has
∣∣∣Xt/ε − X̂t/ε

∣∣∣ ≤ D1 + D2,ε
t , setting D1 = |X0| +

∫ 2τ

0
|Vs| ds and D2,ε

t =

1{t/ε>τ}
∫ t/ε

t/ε−τ

∣∣∣V̂s∣∣∣ds. Indeed:
• if t/ε ≤ τ , ∣∣∣Xt/ε − X̂t/ε

∣∣∣ =
∣∣Xt/ε −Xτ+t/ε +Xτ

∣∣ ≤ ∣∣Xt/ε

∣∣+
∣∣Xτ+t/ε −Xτ

∣∣
≤ |X0|+

∫ t/ε

0
|Vs| ds+

∫ τ+t/ε

τ
|Vs|ds

≤ |X0|+
∫ τ

0
|Vs|ds+

∫ 2τ

τ
|Vs|ds = D1 +D2,ε

t .

• if t/ε > τ ,∣∣∣Xt/ε − X̂t/ε

∣∣∣ =
∣∣∣Xτ +Xτ+(t/ε−τ) −Xτ − X̂t/ε

∣∣∣ =
∣∣∣Xτ + X̂t/ε−τ − X̂t/ε

∣∣∣
≤ |X0|+

∫ τ

0
|Vs| ds+

∣∣∣X̂t/ε−τ − X̂t/ε

∣∣∣ ≤ D1 +

∫ t/ε

t/ε−τ

∣∣∣V̂s∣∣∣ ds = D1 +D2,ε
t .

Since lim
ε→0

v
(β)
ε = 0, v(β)

ε D1 −→
ε→0

0 a.s. and in probability, it remains to show that v(β)
ε D2,ε

t
P−→ 0,

as ε→ 0.
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One can write,

E
[
v(β)
ε D2,ε

t |Fτ
]

= v(β)
ε 1{t/ε>τ}E

[
G(τ, V̂ )|Fτ

]
, where G : (s, v) 7→

∫ t/ε

t/ε−s
|vu| du,

= v(β)
ε 1{t/ε>τ}E

[
G(s, V̂ )

]
|s=τ

, since V̂ is independent of τ ,

= v(β)
ε 1{t/ε>τ}

∫ t/ε

t/ε−τ
E
[∣∣∣V̂u∣∣∣]du ≤ v(β)

ε 1{t/ε>τ}c
∫ t/ε

t/ε−τ
(1 + u)1/(β+1) du

because, Jensen inequality and the first point yield, for all u ≥ 0,

E
[∣∣∣V̂u∣∣∣]β+1

≤ E

[∣∣∣V̂u∣∣∣β+1
]
≤ E

[
V̂ 2
u +

∣∣∣V̂u∣∣∣β+1
]
≤ c(1 + u).

Hence,

E
[
v(β)
ε D2,ε

t |Fτ
]
≤ v(β)

ε 1{t/ε>τ}cτ(1 + t/ε)1/(β+1) ≤ (1{t/ε>τ}cτ)(ε+ t)1/(β+1)v(β)
ε ε−1/(β+1).

In any case, lim
ε→0

v
(β)
ε ε−1/(β+1) = 0, thus E

[
v

(β)
ε D2,ε

t |Fτ
]
−→
ε→0

0 almost surely.
Fix η > 0, by Markov’s inequality,

P
(
v(β)
ε D2,ε

t ≥ η|Fτ
)
≤

E
[
v

(β)
ε D2,ε

t |Fτ
]

η
−→ 0 almost surely.

So, by the dominated convergence theorem, P
(
v

(β)
ε D2,ε

t ≥ η
)
−→
ε→0

0 i.e. v
(β)
ε D2,ε

t
P−→ 0. This

concludes this step.

Step 3: Conclusion: (v(β)
ε Xt/ε)t≥0

f.d
=⇒ (X

(β)
t )t≥0.

Fix n ≥ 0 and t1, · · · , tn ≥ 0. By Slutsky lemma and the previous step, one has

v(β)
ε

n∑
i=1

∣∣∣Xti/ε − X̂ti/ε

∣∣∣ P−→ 0.

By step 1, (v
(β)
ε X̂ti/ε)1≤i≤n

L
=⇒ (X

(β)
ti

)1≤i≤n so Lemma A.0.2 yields (v
(β)
ε Xti/ε)1≤i≤n

L
=⇒ (X

(β)
ti

)1≤i≤n.

iv) Step 1: The convergence of the velocity is sufficient.
If, for any initial condition, one managed to prove that (

√
εVt/ε)t≥0

L
=⇒ (U

(1−β)
t )t≥0, then

(
√
εVt/ε, ε

3/2Xt/ε)t≥0 = Gε(
√
εV·/ε), where Gε : v 7→

(
vt, ε

3/2X0 +
∫ t

0
vs ds

)
t≥0

is converging

uniformly to G : v 7→
(
vt,

∫ t

0
vs ds

)
t≥0

, as ε→ 0. So that, by Lemma A.0.3,

(
√
εVt/ε, ε

3/2Xt/ε)t≥0
L

=⇒ (U
(1−β)
t ,

∫ t

0
U (1−β)
s )t≥0.

Assume now that one managed to show that for V0 = 0, (
√
εVt/ε)t≥0

L
=⇒ (U

(1−β)
t )t≥0. Consider

(Vt)t≥0 a solution to (2.1) starting at V0. And, as in the preceding proof, introduce the stopping
time τ and the process V̂ which satisfies (2.1) and V̂0 = 0. Then, one gets (

√
εV̂t/ε)t≥0

L
=⇒

(U
(1−β)
t )t≥0.

Step 2: For all T > 0, δεT :=
√
ε sup

[0,T ]

∣∣∣Vt/ε − V̂t/ε∣∣∣ P−→ 0.

Fix T > 0. Observe that
√
ε sup

[0,T ]

∣∣∣Vt/ε − V̂t/ε∣∣∣ =
√
ε sup

[0,T ]

∣∣∣V̂t/ε−τ − V̂t/ε∣∣∣. Fix η > 0, it suffices
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to show that P

(
√
ε sup

[0,T ]

∣∣∣V̂t/ε−τ − V̂t/ε∣∣∣ ≥ η
)
−→
ε→0

0. Since
(√

εV̂t/ε

)
t≥0

converges in law in

C([0,+∞)), the family
{(√

εV̂t/ε

)
t≥0

, ε > 0

}
is tight. Hence, by Proposition A.0.1,

lim
δ→0

sup
ε>0

P(wδ(
√
εV̂·/ε) ≥ η) = 0,

where wδ(f) := sup{|f(t)− f(s); s, t ∈ [0, T ], |t− s| ≤ δ|}, for every f ∈ C([0, T ]). Fix γ > 0.
Let δ0 > 0 be chosen such that sup

ε>0
P(wδ0(

√
εV̂·/ε) ≥ η) ≤ γ/2. One can write,

P

(
√
ε sup

[0,T ]

∣∣∣V̂t/ε−τ − V̂t/ε∣∣∣ ≥ η
)
≤ P

(
√
ε sup

[0,T ]

∣∣∣V̂t/ε−τ − V̂t/ε∣∣∣ ≥ η, ετ ≤ δ0

)
+ P(ετ > δ0).

Since τ is almost surely finite, ετ converges to 0 a.s. so in probability, consequently there exists
ε0 such that, for all ε ≤ ε0, P(ετ > δ0) ≤ γ/2. On the other hand, on the event {ετ ≤ δ0}, for
t ∈ [0, T ],

√
ε
∣∣∣V̂t/ε−τ − V̂t/ε∣∣∣ ≤ sup

t,s∈[0,T ]
|t−s|≤δ0

√
ε
∣∣∣V̂s/ε − V̂t/ε∣∣∣ = wδ0(

√
εV̂·/ε).

So, sup
[0,T ]

√
ε
∣∣∣V̂t/ε−τ − V̂t/ε∣∣∣1{ετ≤δ0} ≤ wδ0(

√
εV̂·/ε). Hence,

P

(
√
ε sup

[0,T ]

∣∣∣V̂t/ε−τ − V̂t/ε∣∣∣ ≥ η, ετ ≤ δ0

)
≤ P

(
sup
[0,T ]

√
ε
∣∣∣V̂t/ε−τ − V̂t/ε∣∣∣ 1{ετ≤δ0} ≥ η

)
≤ P(wδ0(

√
εV̂·/ε) ≥ η) ≤ γ/2.

This concludes this step.
Step 3: (

√
εVt/ε)t≥0

L
=⇒ (U

(1−β)
t )t≥0.

One knows that (
√
εV̂t/ε)t≥0

L
=⇒ (U

(1−β)
t )t≥0 and, for all T > 0,

√
ε sup

[0,T ]

∣∣∣Vt/ε − V̂t/ε∣∣∣ P−→ 0.

Thus, d(
√
εV·/ε,

√
εV̂·/ε)

P−→ 0, where d : f, g ∈ C([0,+∞)) 7→
+∞∑
n=0

1

2n
sup
[0,n]
|f(t)− g(t)| is a metric

on C([0,+∞)). Indeed, fix η > 0 and choose N > 0 such that
∑+∞

n=N+1 1/2n ≤ η/2, then,

d(
√
εV·/ε,

√
εV̂·/ε) ≤ η/2 +

N∑
n=0

1

2n
sup
[0,n]

√
ε
∣∣∣Vt/ε − V̂t/ε∣∣∣ .

It follows that

P
(

d(
√
εV·/ε,

√
εV̂·/ε) > η

)
≤

N∑
n=0

P

(
sup
[0,n]

√
ε
∣∣∣Vt/ε − V̂t/ε∣∣∣ > η′

)
−→
ε→0

0,

where η′ = η(2
∑+∞

n=N+1
1

2n )−1. Lemma A.0.2 yields (
√
εVt/ε)t≥0

L
=⇒ (U

(1−β)
t )t≥0.

2.2.2 Information on the velocity process with initial condition (0, 0).

In the sequel, (Wt)t≥0 stands for a standard Brownian motion. Fix β > 0, ε > 0, aε > 0 and define,

for t ≥ 0, Aεt =
ε

aε

∫ t

0
σ

(
Ws

aε

)−2

ds. Since, for all t ≥ 0, Aε′t =
ε

aε
σ

(
Wt

aε

)−2

is positive, then, t 7→ Aεt

is a continuous increasing function. Moreover, Aε0 = 0 and by Lemma A.0.1, Aε∞ = +∞ almost surely.
Thus, denoting by (τ εt )t≥0 its inverse, it is well defined, continuous increasing bijective from R+ to
itself, thanks to the monotone bijection theorem. In order to prove that (Vt)t≥0 is global, regular and
recurrent, one needs the following lemma.
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Lemma 2.2.2. Set

V ε
t := h−1

(
Wτεt

aε

)
and Xε

t := Hε
τεt
, where Hε

t :=
1

a2
ε

∫ t

0
φ

(
Ws

aε

)
ds.

If (Vt, Xt)t≥0 is the solution of (2.1) starting from (0, 0) then (Vt/ε, Xt/ε)t≥0
L
= (V ε

t , X
ε
t )t≥0.

Remark 2.2.1. This lemma will be again useful for the proof of Theorem 2.1.1, by choosing the appro-
priate aε.

Proof. Set Y ε
t := Wτεt

. There exists a Brownian motion (Bε
t )t≥0 such that (Yt)t≥0 solves Y ε

t =
aε√
ε

∫ t

0
σ

(
Y ε
s

aε

)
dBε

s (see [Proposition 1.13 p.373 in RY99] for details). By Itô’s formula, one can

write

V ε
t = V ε

0 +

∫ t

0
(h−1)′

(
Y ε
s

aε

)
dY ε

s

aε
+

1

2

∫ t

0
(h−1)′′

(
Y ε
s

aε

)
d〈Y ε, Y ε〉s

a2
ε

.

But, (h−1)′(y) =
1

σ(y)
and, using the equation satisfied by h,

(h−1)′′(y) =
−h′′(h−1(y))

σ(y)
=
−βF (h−1(y))h′(h−1(y))

σ3(y)
=
−βF (h−1(y))

σ2(y)
.

Thus,

V ε
t =

1√
ε
Bε
t −

β

2ε

∫ t

0
F

(
h−1

(
Y ε
s

aε

))
ds =

1√
ε
Bε
t −

β

2ε

∫ t

0
F (V ε

s ) ds.

On the other hand, using (2.1),

Vt/ε = Bt/ε −
β

2

∫ t/ε

0
F (Vs) ds =

1√
ε
(
√
εBt/ε)−

β

2ε

∫ t

0
F (Vu/ε) du.

Hence (V ε
t )t≥0 and (Vt/ε)t≥0 are solutions of two SDE driven by two Brownian processes (Bε

t )t≥0 and
(
√
εBt/ε)t≥0, so they have the same law, by [Theorem 3.5 ii) in RY99]. Besides, one gets

Xt/ε =

∫ t/ε

0
Vs ds =

1

ε

∫ t

0
Vs/ε ds

L
=

1

ε

∫ t

0
V ε
s ds,

and it follows that
(
Vt/ε, Xt/ε

)
t≥0

L
=

(
V ε
t ,

1

ε

∫ t

0
V ε
s ds

)
t≥0

. To conclude, observe that

1

ε

∫ t

0
V ε
s ds =

1

ε

∫ t

0
h−1

(
Wτεs

aε

)
ds = a−2

ε

∫ τεt

0

h−1(Wu/aε)

σ2(Wu/aε)
du

= a−2
ε

∫ τεt

0
φ(Wu/aε) du = Hτεt

.

Definition 2.2.1. A process (Vt)t≥0 is said to be regular if, for all x, y ∈ R, Px(Ty < ∞) > 0, where
Ty = inf{t ≥ 0, Vt = y}.

One is now able to obtain some information about the velocity process:

Lemma 2.2.3. The solution (Vt)t≥0 to (2.1) starting at 0 is global, regular and recurrent.

Proof. Applying Lemma 2.2.2 with aε = ε = 1, one gets that (Vt)t≥0 and (h−1(Wτ1t
))t≥0 have the same

law, where (τ1
t )t≥0 is a continuous time-change. Hence, (Vt) is defined for all times. By recurrence

of the Brownian motion, since τ1 and h are bijective, (Vt)t≥0 is also recurrent. Moreover a Brownian
motion is clearly regular, then so is the velocity process, by one-to-one correspondance.
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2.3 Proof of Theorem 2.1.1

2.3.1 Case β > 5

In this part, Theorem 2.1.1 is proved for the normal diffusive case β > 5. Assume β > 5, thanks to
Lemma 2.2.1, one can assume X0 = V0 = 0. Since β > 1, (2.3) defines a probability measure and
hence (Vt)t≥0 is a positive recurrent process, having its invariant probability given by (2.3).

The function g : v 7→ 2
∫ v

0
ϑ−β(x)

∫ +∞

x
uϑβ(u) dudx, previously introduced, is an odd function

satisfying g′′(v)− βF (v)g′(v) = −2v. Itô’s formula yields

g(Vt) = g(V0)+

∫ t

0
g′(Vs) dBs−

∫ t

0

β

2
g(Vs)F (Vs) ds+

1

2

∫ t

0
βF (Vs)g

′(Vs) ds−
∫ t

0
Vs ds =

∫ t

0
g′(Vs) dBs−Xt,

because X0 = V0 = 0. It follows that
√
εXt/ε =

√
ε
∫ t/ε

0
g′(Vs) dBs −

√
εg(Vt/ε).

Step 1: For all t ≥ 0,
√
εg(Vt/ε)

P−→ 0.
Thanks to [Lemma 23.17 p.466 in Kal02], Vt tends in distribution towards µβ , as t→ +∞. Fix t ≥ 0,
g is a continuous function, so g(Vt/ε) converges weakly to g(Ṽ ), as ε→ 0, where Ṽ is a µβ-distributed

random variable, hence, by Slutsky lemma,
√
εg(Vt/ε)

P−→ 0.

Step 2: (M ε
t )t≥0

L
=⇒ (σββt)t≥0, where M ε

t :=
√
ε
∫ t/ε

0
g′(Vs) dBs.

By [Theorem 3.11 p. 473 in JS03], (M ε
t )t≥0 being a continuous local martingale, it suffices to show

that for all t ≥ 0, 〈M ε,M ε〉t
P−→ σ2

βt, as ε → 0. Fix t ≥ 0, using Itô’s isometry, 〈M ε,M ε〉t =

ε
∫ t/ε

0
g′(Vs)

2 ds. Besides, g′2 is µβ-integrable:

∫
R
g′(x)2µβ(dx) = 2

∫ +∞

0
g′(x)2µβ(dx) = 8

∫ +∞

0

[
ϑ−β(x)

∫ +∞

x
uϑβ(u) du

]2

µβ(dx) = σ2
β,

by definition of µβ . Integrating the equivalent given in (2.2), σ2
β is finite, hence the ergodic theorem

can be applied to find that

ε

∫ t/ε

0
g′(Vs)

2 ds = t
ε

t

∫ t/ε

0
g′(Vs)

2 ds −→
ε→0

t

∫
R
g′2 dµβ = σ2

βt.

Step 3: Conclusion.
Fix n ≥ 0 and t1, · · · , tn ≥ 0. By Slutsky lemma

√
ε
∑n

i=1

∣∣g(Vti/ε)
∣∣ P−→ 0 and (M ε

ti)1≤i≤n
L

=⇒
(σββti)1≤i≤n. Hence, by Lemma A.0.2, (

√
εXti/ε)1≤i≤n

L
=⇒ (σββti)1≤i≤n.

This ends the proof of Theorem 2.1.1 i).

Remark 2.3.1. For β = 5, the proof is the same, it remains to show that for all t ≥ 0,
ε

|log ε|

∫ t/ε

0
g′(Vs)

2 ds
P−→ σ2

5t, as ε→ 0.

2.3.2 Case β ∈ (0, 1)

In this part, Theorem 2.1.1 for β ∈ (0, 1) is proved. Assume β ∈ (0, 1), thanks to Lemma 2.2.1, it
suffices to prove that (

√
εVt/ε)t≥0

L
=⇒ (U

(1−β)
t )t≥0, when V0 = 0.

Definition 2.3.1. Fix δ ∈ (0, 2). Set the time-change Āt := (2 − δ)−2
∫ t

0
|Ws|−2(1−δ)/(2−δ) ds and its

inverse (τ̄t)t≥0. Then (sgn(Wτ̄t) |Wτ̄t |
1/(2−δ))t≥0 is called a symmetric Bessel process of dimension δ.
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Remark 2.3.2. Call α =
2(1− δ)
(2− δ)

< 1. Then, for all t ≥ 0,

E

[∫ t

0
|Ws|−α ds

]
=

∫ t

0
E
[
|Ws|−α

]
ds = 2

∫ t

0

∫ +∞

0

x−αe−x
2/2s

√
2πs

dx ds

≤ 2

∫ t

0

∫ +∞

0

x−αe−x
2/2t

√
2πs

dx ds = 2

√
2t

π

∫ +∞

0
x−αe−x

2/2t dx < +∞.

Hence, E
[
Āt
]
< +∞ almost surely. So, the map t 7→ Āt is almost surely continuous, strictly increasing

and by Lemma A.0.1 Ā∞ = +∞. It follows that (τ̄t)t≥0 is well-defined and continuous.

Set δ = 1 − β ∈ (0, 2) and consider (U
(1−β)
t )t≥0 the process, defined above, associated to (Āt)t≥0

and (τ̄t)t≥0. Applying Lemma 2.2.2, with aε = ε(β+1)/2, one obtains that (
√
εV ε
t )t≥0

L
= (
√
εVt/ε)t≥0,

where (V ε
t )t≥0 is the process defined in Lemma 2.2.2. Then, it suffices to prove that (

√
εV ε
t )t≥0

L
=⇒

(U
(1−β)
t )t≥0.

As in step 2 of the proof of Lemma 2.2.1 iv), it suffices to prove that for all T ≥ 0, sup
[0,T ]

∣∣∣√εV ε
t − U

(1−β)
t

∣∣∣ P−→

0, as ε→ 0.
Step 1: For all T ≥ 0, lim

ε→0
sup
[0,T ]

∣∣τ εt − τ̄t∣∣ = 0 almost surely.

Fix T ≥ 0. Since σ ≥ c > 0 and σ(z) ∼
|z|→∞

(β + 1) |z|β/(β+1), there exists C > 0 such that, for all

z ∈ R, σ−2(z) ≤ C |z|−2β/(β+1). Thus, by the dominated convergence theorem,

sup
[0,T ]

∣∣Aεt − Āt∣∣ ≤ ∫ T

0

∣∣∣∣ε−βσ−2

(
Ws

ε(β+1)/2

)
− (β + 1)−2 |Ws|−2β/(β+1)

∣∣∣∣ ds −→ε→0
0 almost surely,

Indeed, since ĀT is almost surely finite,∣∣∣∣ε−βσ−2

(
Ws

ε(β+1)/2

)
− (β + 1)−2 |Ws|−2β/(β+1)

∣∣∣∣ ≤ (C + (β + 1)−2) |Ws|−2β/(β+1) ∈ L1([0, T ]).

Besides, ε−βσ−2

(
Ws

ε(β+1)/2

)
∼
ε→0

(β + 1)−2 |Ws|−2β/(β+1). Then, using that Ā∞ = +∞, it follows, by

Lemma A.0.4, that lim
ε→0

sup
[0,T ]
|τ εt − τ̄t| = 0 almost surely.

Step 2: For all T ≥ 0, lim
ε→0

sup
[0,T ]

∣∣Wτ εt
−Wτ̄t

∣∣ = 0 almost surely.

Fix T ≥ 0. Since (τ εT ) converges and for all t ∈ [0, T ], τ εt ≤ τ εT , there exists M̃ such that ∀ε > 0
∀t ∈ [0, T ], τ εt ≤ M̃ almost surely. Set M = max(M̃, τ̄T ). Fix η > 0, one can choose δ > 0 such that

∀x, y ∈ [0,M ] |x− y| ≤ δ ⇒ |Wx −Wy| ≤ η.

Almost surely, there exists ε0 such that for all ε ≤ ε0, sup
[0,T ]
|τ εt − τ̄t| ≤ δ, whence sup

[0,T ]

∣∣Wτεt
−Wτ̄t

∣∣ ≤ η.
Step 3: For all M > 0, κε(M) := sup

|z|≤M

∣∣∣√εh−1(z/ε(β+1)/2)− sgn(z) |z|1/(β+1)
∣∣∣ −→
ε→0

0.

Fix M > 0. Define γ : z 7→ h−1(z)

sgn(z) |z|1/(β+1)
− 1, with γ(0) = −1. Since h−1 is C1, h−1(0) = 0 and

h−1(z) ∼
|z|→∞

sgn(z) |z|1/(β+1), γ is continuous and lim
|z|→+∞

γ(z) = 0, hence γ is bounded. It follows

that

κε(M) = sup
|z|≤M

∣∣∣γ(z/ε(β+1)/2) |z|1/(β+1)
∣∣∣ ≤ ε1/4 ‖ γ ‖∞ +M1/(β+1) sup

|z|≥ε(β+1)/4

∣∣∣γ(z/ε(β+1)/2)
∣∣∣

≤ ε1/4 ‖ γ ‖∞ +M1/(β+1) sup
|z|≥ε−(β+1)/4

|γ(z)| −→
ε→0

0.
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Step 4: Conclusion.
By step 2, MT = sup

[0,T ]
sup
ε∈(0,1)

∣∣Wτεt

∣∣ is a.s. finite. Thus, for ε ∈ (0, 1), using steps 2 and 3,

sup
[0,T ]

∣∣∣√εV ε
t − U

(1−β)
t

∣∣∣ = sup
[0,T ]

∣∣∣√εh−1(Wτεt
/ε(β+1)/2)− sgn(Wτ̄t) |Wτ̄t |

1/(β+1)
∣∣∣

≤ κε(MT ) + sup
[0,T ]

∣∣∣sgn(Wτεt
)
∣∣Wτεt

∣∣1/(β+1) − sgn(Wτ̄t) |Wτ̄t |
1/(β+1)

∣∣∣ −→
ε→0

0 almost surely.

This ends the proof of Theorem 2.1.1 v).

2.3.3 Case β ∈ [1, 5]

Assume β ∈ [1, 5]. One needs to state two lemma.

Lemma 2.3.1. Fix α ∈ (0, 2). Consider (L0
t )t≥0 the local time at 0 of (Wt)t≥0 and its right-continuous

generalized inverse τt = inf{u ≥ 0, L0
u > t}. For η > 0, set Kη

t :=
∫ t

0
sgn(Ws) |Ws|1/α−2 1{|Ws|≥η} ds.

Then (Kη
t )t≥0 converges a.s., as η → 0, to a symmetric α-stable process (Kt)t≥0, such that

E
[
eiξKτt

]
= e−καt|ξ|

α

, where κα =
2απα2α

2αΓ(α)2 sin(πα/2)
.

See [YB87].

Lemma 2.3.2. Let (L0
t )t≥0 be the local time at 0 of (Wt)t≥0. Consider (Kt)t≥0 the process defined in

the latter Lemma, with α = (β + 1)/3. For each ε > 0, let (Aεt)t≥0 and (Hε
t )t≥0 be the processes built

in Lemma 2.2.2, with the choice aε =
ε

(β + 1)cβ
, if β ∈ (1, 5] and aε = ε |log ε| /2, if β = 1 respectively.

Then,

i) For all T > 0, lim
ε→0

sup
[0,T ]

∣∣Aεt − L0
t

∣∣ = 0 almost surely.

ii) If β ∈ (1, 5), for all T > 0, lim
ε→0

sup
[0,T ]

∣∣∣ α√εHε
t − (β + 1)1/α−2c

1/α
β Kt

∣∣∣ = 0 almost surely.

iii) If β = 1, for all T > 0, lim
ε→0

sup
[0,T ]

∣∣∣|ε log ε|3/2Hε
t −Kt/

√
2
∣∣∣ = 0 almost surely.

iv) If β = 5, for all T > 0, lim
ε→0

sup
[0,T ]

∣∣T εt − σ2
5L

0
t

∣∣ = 0 a.s., where T εt :=
ε

a2
ε |log ε|

∫ t

0
ψ

(
Ws

aε

)
ds.

Proof. Fix T > 0.

i) Step 1: Assume first β > 1.

Set γ = (β + 1)cβ , recall that aε = ε/γ, so that Aεt =
γ2

ε

∫ t

0
σ

(
γWs

ε

)−2

ds. By the occupation

time formula, denoting Lxt the local time at x of (Wt)t≥0, one can write, for all t ∈ [0, T ],

Aεt =
γ2

ε

∫
R
σ
(γx
ε

)−2
Lxt dx = γ

∫
R
σ(y)−2L

εy/γ
t dy.

Moreover, by definition of cβ ,∫
R

γ

σ2(y)
dy =

∫
R

γ

[h′(h−1(y))]2
dy =

∫
R

γh′(x)

h′(x)2
dx =

∫
R

γϑ(x)β

β + 1
dx = 1.

Consequently,

sup
[0,T ]

∣∣Aεt − L0
t

∣∣ = sup
[0,T ]

∣∣∣∣∫
R
σ(y)−2γ(L

εy/γ
t − L0

t ) dy

∣∣∣∣ ≤ γ ∫
R

sup[0,T ]

∣∣∣Lεy/γt − L0
t

∣∣∣
σ(y)2

dy −→
ε→0

0 a.s.,

by the dominated convergence theorem:
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• for all y ∈ R, sup
[0,T ]

∣∣∣Lεy/γt − L0
t

∣∣∣ −→
ε→0

0 a.s., since a 7→ Lat is uniformly continuous in t on every

compact set (see [Corollary 2.8 p. 226 in RY99]).

• for all y ∈ R and ε > 0, sup
[0,T ]

∣∣∣Lεy/γt − L0
t

∣∣∣ ≤ 2 sup
[0,T ]×R

Lxt < +∞ a.s. by Lemma A.0.5, and

the fact that 1/σ2 is integrable.

Step 2: Assume β = 1.
Integrating the equivalent of σ yields, for all x > 0,∫ x

−x

dy

σ2(y)
∼

x→∞

log x

2
. (2.4)

Fix δ > 0. One can write, for t ∈ [0, T ],

Aεt =
ε

a2
ε

∫ t

0
σ

(
Ws

aε

)−2

ds =

∫ t

0

ε1{|Ws|≤δ}

a2
εσ

2(Ws/aε)
ds︸ ︷︷ ︸

:=Iε,δt

+

∫ t

0

ε1{|Ws|>δ}

a2
εσ

2(Ws/aε)
ds︸ ︷︷ ︸

:=Jε,δt

.

Since there exists c > 0 such that, for all z ∈ R, σ2(z) ≥ c(1+ |z|), if |Ws| > δ, then σ2(Ws/aε) ≥
c(1 + δ/aε) ≥ cδ/aε for ε small enough. Thus,

sup
[0,T ]

∣∣∣J ε,δt ∣∣∣ ≤ ∫ T

0

∣∣∣∣ ε1{|Ws|>δ}

a2
εσ

2(Ws/aε)
ds

∣∣∣∣ ≤ ∫ T

0

ε

aεcδ
ds =

Tε

aεcδ
−→
ε→0

0 almost surely.

Using the occupation time formula one can write

Iε,δt =

∫ δ

−δ

εLxt
a2
εσ

2(x/aε)
dx = L0

t

∫ δ

−δ

ε

a2
εσ

2(x/aε)
dx︸ ︷︷ ︸

:=rε,δ

+

∫ δ

−δ

ε(Lxt − L0
t )

a2
εσ

2(x/aε)
dx︸ ︷︷ ︸

:=Rε,δt

.

But, by (2.4) and the definition of aε,

rε,δ =

∫ δ/aε

−δ/aε

ε

aεσ2(y)
dy ∼

ε→0

ε log(δ/aε)

2aε
−→
ε→0

1.

Using the decomposition of Aεt, one can write∣∣Aεt − L0
t

∣∣ ≤ |rε,δ − 1|L0
t +

∣∣∣Rε,δt ∣∣∣+
∣∣∣J ε,δt ∣∣∣ .

Thus,

lim sup
ε→0

sup
[0,T ]

∣∣Aεt − L0
t

∣∣ ≤ lim sup
ε→0

|rε,δ − 1|︸ ︷︷ ︸
=0

L0
T + lim sup

ε→0
sup
[0,T ]

∣∣∣Rε,δt ∣∣∣+ lim sup
ε→0

sup
[0,T ]

∣∣∣J ε,δt ∣∣∣︸ ︷︷ ︸
=0

.

Moreover,
sup
[0,T ]

∣∣∣Rε,δt ∣∣∣ ≤ rε,δ sup
[0,T ]×[−δ,δ]

∣∣Lxt − L0
t

∣∣ .
So, by [Corollary 1.8 p.226 in RY99],

lim sup
ε→0

sup
[0,T ]

∣∣Aεt − L0
t

∣∣ ≤ sup
[0,T ]×[−δ,δ]

∣∣Lxt − L0
t

∣∣ −→
δ→0

0 almost surely.
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ii) Step 1: The process (Kη
t )t≥0, defined in Lemma 2.3.1, converges almost surely

uniformly on [0, T ], as η → 0, to Kt =
∫
R

sgn(x) |x|(1−2β)/(β+1) (Lxt − L0
t1{|x|≤1}) dx.

Assume β ∈ (1, 5). Set γ = (β + 1)cβ . Since α = (β + 1)/3, 1/α − 2 = (1 − 2β)/(β + 1). With
the notation of Lemma 2.3.1, from the occupation time formula and symmetry it follows that,
for all t ≥ 0,

Kη
t =

∫
R

sgn(x) |x|(1−2β)/(β+1) 1{|x|≥η}L
x
t dx =

∫
R

sgn(x) |x|(1−2β)/(β+1) 1{|x|≥η}(L
x
t−L0

t1{|x|≤1}) dx.

Fix ϑ ∈ (0, 1
2). One has

Mϑ,T := sup
[0,T ]×R

(|x| ∧ 1)−ϑ
∣∣Lxt − L0

t1{|x|≤1}
∣∣ ≤ sup

[0,T ]×[−1,1]
|x|−ϑ

∣∣Lxt − L0
t

∣∣+ sup
[0,T ]×R

Lxt < +∞ a.s.,

by Lemma A.0.5 and the fact that x 7→ Lxt is ϑ-Hölder uniformly in t on every compact set (see
[Corollary 1.8 p.226 in RY99]).
Set K̃t =

∫
R

sgn(x) |x|(1−2β)/(β+1) (Lxt − L0
t1{|x|≤1}) dx. One can write, for η ≤ 1,

sup
[0,T ]

∣∣∣Kη
t − K̃t

∣∣∣ = sup
[0,T ]

∣∣∣∣∫
R

sgn(x) |x|(1−2β)/(β+1) 1{|x|<η}(L
x
t − L0

t1{|x|≤1}) dx

∣∣∣∣
≤Mϑ,T

∫ η

−η
|x|ϑ+(1−2β)/(β+1) dx,

where ϑ ∈ (0, 1
2) is chosen to be ϑ = 1

2 − δ/2, for δ = 1−2β
β+1 + 3

2 ∈ (0, 1) (because β ∈ (1, 5)).
One can conclude by the dominated convergence theorem. Moreover, by Lemma 2.3.1, (Kη

t )t≥0

converges pointwise to (Kt)t≥0, hence Kt = K̃t, for all t ≥ 0.
Step 2: Conclusion.
Observe that α

√
εa−2
ε = γ2ε(1−2β)/(β+1). Thus, by the occupation time formula and the fact that

φ is odd, it follows that, for t ∈ [0, T ],

α
√
εHε

t = γ2ε(1−2β)/(β+1)

∫ t

0
φ

(
γWs

ε

)
ds = γ2ε(1−2β)/(β+1)

∫
R
φ
(γx
ε

)
Lxt dx

= γ2ε(1−2β)/(β+1)

∫
R
φ
(γx
ε

)
(Lxt − L0

t1{|x|≤1}) dx.

Consequently, for any ϑ ∈ (0, 1
2),

sup
[0,T ]

∣∣∣ α√εHε
t − (β + 1)1/α−2c

1/α
β Kt

∣∣∣
≤
∫

R

∣∣∣γ2ε(1−2β)/(β+1)φ
(γx
ε

)
− (β + 1)1/α−2c

1/α
β sgn(x) |x|(1−2β)/(β+1)

∣∣∣ sup
[0,T ]

∣∣Lxt − L0
t1{|x|≤1}

∣∣dx
≤Mϑ,T

∫
R

∣∣∣γ2ε(1−2β)/(β+1)φ
(γx
ε

)
− (β + 1)1/α−2c

1/α
β sgn(x) |x|(1−2β)/(β+1)

∣∣∣ (|x| ∧ 1)ϑ dx.

In order to apply the dominated convergence theorem the following two facts need to be checked:

• With the equivalent for φ, for all x ∈ R,

γ2ε(1−2β)/(β+1)φ
(γx
ε

)
∼
ε→0

(β + 1)1/α−2c
1/α
β sgn(x) |x|(1−2β)/(β+1) , by definition of γ.

• Using that for all z ∈ R, |φ(z)| ≤ C |z|(1−2β)/(β+1), one has, for ε > 0,∣∣∣γ2ε(1−2β)/(β+1)φ
(γx
ε

)∣∣∣ (|x| ∧ 1)ϑ ≤

{
C̃ |x|ϑ+(1−2β)/(β+1) if |x| ≤ 1
˜̃C |x|(1−2β)/(β+1) if |x| > 1,

which is an integrable function for β ∈ (2, 5). Here ϑ ∈ (0, 1
2) is chosen as in the previous

step.
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For β ∈ (1, 2], one has to proceed quite differently. Indeed, the last function is integrable on
{|x| ≤ 1}, so

sup
[0,T ]

∣∣∣∣∣
∫
|x|≤1

(
γ2ε(1−2β)/(β+1)φ

(γx
ε

)
− (β + 1)1/α−2c

1/α
β sgn(x) |x|(1−2β)/(β+1)

)
(Lxt − L0

t ) dx

∣∣∣∣∣ −→ε→0
0.

It remains to show that

sup
[0,T ]

∣∣∣∣∣
∫
|x|>1

(
γ2ε(1−2β)/(β+1)φ

(γx
ε

)
− (β + 1)1/α−2c

1/α
β sgn(x) |x|(1−2β)/(β+1)

)
Lxt dx

∣∣∣∣∣ −→ε→0
0.

Fix t ∈ [0, T ], by the occupation-time formula, one can write∫
|x|>1

(
γ2ε(1−2β)/(β+1)φ

(γx
ε

)
− (β + 1)1/α−2c

1/α
β sgn(x) |x|(1−2β)/(β+1)

)
Lxt dx

=

∫ t

0

(
γ2ε(1−2β)/(β+1)φ

(
γWs

ε

)
− (β + 1)1/α−2c

1/α
β sgn(Ws) |Ws|(1−2β)/(β+1)

)
1{|Ws|>1} ds.

Hence,

sup
[0,T ]

∣∣∣∣∣
∫
|x|>1

(
γ2ε(1−2β)/(β+1)φ

(γx
ε

)
− (β + 1)1/α−2c

1/α
β sgn(x) |x|(1−2β)/(β+1)

)
Lxt dx

∣∣∣∣∣
≤
∫ T

0

(
γ2ε(1−2β)/(β+1)φ

(
γWs

ε

)
− (β + 1)1/α−2c

1/α
β sgn(Ws) |Ws|(1−2β)/(β+1)

)
1{|Ws|>1} ds.

Now the dominated convergence theorem is applied:

• As before, for all s ∈ [0, T ],

γ2ε(1−2β)/(β+1)φ

(
γWs

ε

)
∼
ε→0

(β + 1)1/α−2c
1/α
β sgn(Ws) |Ws|(1−2β)/(β+1) .

• For all ε > 0 and s ∈ [0, T ],∣∣∣∣γ2ε(1−2β)/(β+1)φ

(
γWs

ε

)∣∣∣∣1{|Ws|>1} ≤ C̃ |Ws|(1−2β)/(β+1) 1{|Ws|>1} ≤ C̃ ∈ L1([0, T ]),

since 1−2β
β+1 < 0.

This concludes the proof.

iii) Assume β = 1 and set aε = ε |log ε| /2. With the notations of Lemma 2.3.1, it follows, by the
occupation time formula, that, for t ≥ 0,

Kη
t =

∫
R

sgn(x) |x|−1/2 1{|x|≥η}L
x
t dx.

Setting K̃t :=
∫ t

0
sgn(Ws) |Ws|−1/2 ds =

∫
R

sgn(x) |x|−1/2 Lxt dx, one gets∣∣∣K̃t −Kη
t

∣∣∣ ≤ ∫
R
|x|−1/2 Lxt 1{|x|<η} dx ≤ sup

R
Lxt

∫ η

−η

1√
x

dx −→
η→0

0.

Using Lemma 2.3.1, one obtains that Kt = K̃t =
∫ t

0
sgn(Ws) |Ws|−1/2 ds.

Besides, |ε log ε|3/2Hε
t = 4 |ε log ε|−1/2

∫ t

0
φ

(
2Ws

ε |log ε|

)
ds. This yields

sup
[0,T ]

∣∣∣|ε log ε|3/2Hε
t −Kt/

√
2
∣∣∣ ≤ ∫ T

0

∣∣∣∣∣4 |ε log ε|−1/2 φ

(
2Ws

ε |log ε|

)
− sgn(Ws) |Ws|−1/2

√
2

∣∣∣∣∣ ds −→ε→0
0,

by the dominated convergence theorem:
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• for all s ∈ [0, T ], 4 |ε log ε|−1/2 φ

(
2Ws

ε |log ε|

)
−→
ε→0

sgn(Ws) |Ws|−1/2

√
2

, using the equivalent of

φ.

• Since for all z ∈ R, |φ(z)| ≤ C |z|−1/2, then, for all s ∈ [0, T ] and ε > 0,∣∣∣∣4 |ε log ε|−1/2 φ

(
2Ws

ε |log ε|

)∣∣∣∣ ≤ C̃ |Ws|−1/2 ∈ L1([0, T ]),

by Remark 2.3.2.

iv) Assume β = 5, the proof is very similar to the first point with β = 1. Set γ = 6c5. Taking into
account the information known about ψ, it follows from the integration of the equivalent, that,
for all x > 0, ∫ x

−x
ψ(z) dz ∼

x→∞

2 log x

81
. (2.5)

Besides, one can write

T εt =

∫ t

0

γ2

ε |log ε|
ψ

(
γWs

ε

)
ds =

∫ t

0

γ2

ε |log ε|
ψ

(
γWs

ε

)
1{|Ws|≤δ} ds︸ ︷︷ ︸

:=Ĩε,δt

+

∫ t

0

γ2

ε |log ε|
ψ

(
γWs

ε

)
1{|Ws|>δ} ds︸ ︷︷ ︸

:=J̃ε,δt

.

Since there exists c̃ > 0 such that, for all z ∈ R, ψ(z) ≤ c̃

|z|
, if |Ws| > δ, then ψ(γWs/ε) ≤

c̃ε

γδ
.

Thus,

sup
[0,T ]

∣∣∣J̃ ε,δt ∣∣∣ ≤ ∫ T

0

∣∣∣∣∣γ21{|Ws|>δ}

ε |log ε|
ψ

(
γWs

ε

)
ds

∣∣∣∣∣ ≤ Tγc̃

|log ε| δ
−→
ε→0

0 almost surely.

One can then use the occupation time formula to write

Ĩε,δt =

∫ δ

−δ

γ2

ε |log ε|
ψ
(γx
ε

)
Lxt dx = L0

t

∫ δ

−δ

γ2

ε |log ε|
ψ
(γx
ε

)
dx︸ ︷︷ ︸

:=r̃ε,δ

+

∫ δ

−δ

γ2(Lxt − L0
t )

ε |log ε|
ψ
(γx
ε

)
dx︸ ︷︷ ︸

:=R̃ε,δt

.

But, by (2.5),

r̃ε,δ =

∫ γδ/ε

−γδ/ε

γ

|log ε|
ψ(y) dy ∼

ε→0

2γ log(γδ/ε)

81 |log ε|
−→
ε→0

σ2
5.

By the decomposition of T εt , one can write∣∣T εt − σ2
5L

0
t

∣∣ ≤ ∣∣r̃ε,δ − σ2
5

∣∣L0
t +

∣∣∣R̃ε,δt ∣∣∣+
∣∣∣J̃ ε,δt ∣∣∣ .

Thus,

lim sup
ε→0

sup
[0,T ]

∣∣T εt − σ2
5L

0
t

∣∣ ≤ lim sup
ε→0

∣∣r̃ε,δ − σ2
5

∣∣︸ ︷︷ ︸
=0

L0
T + lim sup

ε→0
sup
[0,T ]

∣∣∣R̃ε,δt ∣∣∣+ lim sup
ε→0

sup
[0,T ]

∣∣∣J̃ ε,δt ∣∣∣︸ ︷︷ ︸
=0

.

Moreover,
sup
[0,T ]

∣∣∣R̃ε,δt ∣∣∣ ≤ r̃ε,δ sup
[0,T ]×[−δ,δ]

∣∣Lxt − L0
t

∣∣ .
So

lim sup
ε→0

sup
[0,T ]

∣∣T εt − σ2
5L

0
t

∣∣ ≤ sup
[0,T ]×[−δ,δ]

∣∣Lxt − L0
t

∣∣ −→
δ→0

0 a.s., by [Corollary 1.8 p.226 in RY99].
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Proof of Theorem 2.1.1 ii)− iv). Assume β ∈ [1, 5]. Denote by (L0
t )t≥0 the local time of (Wt)t≥0

and set τt = inf{u ≥ 0, L0
u > t} its generalized inverse. Keep the notations of Lemma 2.3.1 with

α = (β + 1)/3 and Lemma 2.2.2 with

aε =

{
ε/[(β + 1)cβ] if β ∈ (1, 5],
ε |log ε| if β = 1.

ii) Assume β = 5, as seen in Remark 2.3.1, it suffices to show that, for each t ≥ 0,

ε

|log ε|

∫ t/ε

0
g′(Vs)

2 ds =
1

|log ε|

∫ t

0
g′(Vs/ε)

2 ds
P−→ σ2

5t, as ε→ 0.

Thanks to Lemma 2.2.2, it is equivalent to show that, for each t ≥ 0, J εt :=
1

|log ε|

∫ t

0
g′(V ε

s )2 ds
P−→

σ2
5t. For all t ≥ 0,

J εt =

∫ t

0

g′(h−1(Wτεs/aε))
2

|log ε|
ds =

∫ τεt

0

εg′(h−1(Wu/aε))
2

a2
ε |log ε|σ(Wu/aε)2

du =
ε

a2
ε |log ε|

∫ τεt

0
ψ

(
Wu

aε

)
du = T ετεt .

One knows, by Lemma 2.3.2, that, for all T > 0, sup
[0,T ]

∣∣Aεt − L0
t

∣∣ −→
ε→0

0 almost surely. Since (τt)t≥0

has no fixed times of jumps (see [Theorem 8 p. 114 in Ber98]), it follows from Lemma A.0.4,
that, for all t ≥ 0, τ εt −→

ε→0
τt almost surely. Moreover, for all t ≥ 0,

∣∣J εt − σ2
5t
∣∣ ≤ ∣∣∣T ετεt − σ2

5L
0
τεt

∣∣∣+ σ2
5

∣∣∣L0
τεt
− L0

τt

∣∣∣+ σ2
5

∣∣L0
τt − t

∣∣ .
Hence, using again Lemma 2.3.2 and the fact that T := sup

ε∈(0,1)
τ εt is almost surley finite, the first

term tends to 0. For the second term, one can use the fact that τ εt −→
ε→0

τt a.s. and the almost
sure continuity of the local time. The last term is equal to 0 almost surely.

iii) Assume β ∈ (1, 5). By Lemma 2.2.1, one can assume again that X0 = V0 = 0 so that, by
Lemma 2.2.2, (Xt/ε)t≥0

L
= (Hτεt

)t≥0. Thanks to Lemma 2.3.1, S(α)
t := σ−1

β (β + 1)1/α−2c
1/α
β Kτt

is a symmetric α-stable process with E[exp(iuS
(α)
t )] = exp(−t |u|α). Hence, as already seen,

it suffices to prove that, for each t ≥ 0, δt(ε) =
∣∣∣ α√εHε

τεt
− (β + 1)1/α−2c

1/α
β Kτt

∣∣∣ −→
ε→0

0 al-
most surely. Fix t ≥ 0. As previously, τ εt −→

ε→0
τt a.s. and by Lemma 2.3.2, for all T > 0,

lim
ε→0

sup
[0,T ]

∣∣∣ α√εHε
t − (β + 1)1/α−2c

1/α
β Kt

∣∣∣ = 0 almost surely. Hence,

δt(ε) ≤
∣∣∣ α√εHε

τεt
− (β + 1)1/α−2c

1/α
β Kτεt

∣∣∣+ (β + 1)1/α−2c
1/α
β

∣∣Kτεt
−Kτt

∣∣ .
The first term tends to 0 almost surely, since T := sup

ε∈(0,1)
τ εt is almost surely finite. The second

term tends to 0 by the continuity of (Kt)t≥0. One gets, as previously, the convergence.

iv) Assume β = 1. Using the same argument as before, S(2/3)
t := (

√
2σ1)−1Kτt is a symmetric stable

pocess of index 2
3 with E[exp(iuS

(2/3)
t )] = exp(−t |u|2/3). Thus, it suffices to prove that, for all

t ≥ 0, δ̃t(ε) :=
∣∣∣|ε log ε|3/2Hε

τεt
−Kτt/

√
2
∣∣∣ −→
ε→0

0 almost surely. But, for all t ≥ 0,

δ̃t(ε) ≤
∣∣∣|ε log ε|3/2Hε

τεt
−Kτεt

/
√

2
∣∣∣+
∣∣Kτεt

−Kτt

∣∣ /√2.

By Lemma 2.3.2 again and the continuity of (Kt)t≥0, δ̃t(ε) converges to 0 almost surely, as ε→ 0.
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2.4 Proof of Corollary 2.1.2

Assume β > 1 and consider (Vt, Xt)t≥0 the solution to (2.1), associated to some Brownian motion
(Bt)t≥0, and starting from some initial condition (V0, X0). Define, for t ≥ 0, Ft := σ(X0, V0, Bs, s ≤ t).
Theorem 2.1.1 yields (v

(β)
ε Xt/ε)t≥0

f.d
=⇒ (X

(β)
t )t≥0, where the speed v(β)

ε −→
ε→0

0 and the limiting process

(X
(β)
t )t≥0 are those appearing in Theorem 2.1.1. Fix t ≥ 0. One has to show that (v

(β)
ε Xt/ε, Vt/ε)

L
=⇒

(X
(β)
t , Ṽ ). By [Theorem 4.29 p. 78 in Kal02], the density of regular functions and the independence

of Ṽ , it is sufficient to show that, for all φ ∈ C1
b (R) and ψ ∈ Cb(R),

∆ε :=

∣∣∣∣E [φ(v(β)
ε Xt/ε)ψ(Vt/ε)

]
− E

[
φ(X

(β)
t )

] ∫
R
ψ dµβ

∣∣∣∣ −→ε→0
0.

Fix φ ∈ C1
b (R) and ψ ∈ Cb(R). Call µβ(ψ) :=

∫
R
ψ dµβ .

Step 1: For all h ∈ (0, t), δε := E
[∣∣E [ψ(Vt/ε)|F(t−h)/ε

]
− µβ(ψ)

∣∣] −→
ε→0

0.

Fix h ∈ (0, t). The usual notation Ptψ(v) = Ev[ψ(Vt)] and ‖ · ‖TV , for the total variation norm, is
used. Let Ṽ be a µβ-distributed random variable independent of X(β), such that P(Ṽ 6= V(t−h)/ε) =
‖L(V(t−h)/ε)− µβ‖TV . By Markov’s property,

δε = E
[∣∣∣EV(t−h)/ε [ψ(Vh/ε)

]
− µβ(ψ)

∣∣∣] = E
[∣∣Ph/εψ(V(t−h)/ε)− µβ(ψ)

∣∣]
≤ E

[∣∣∣Ph/εψ(V(t−h)/ε)− Ph/εψ(Ṽ )
∣∣∣]︸ ︷︷ ︸

:=δ1ε

+ E
[∣∣∣Ph/εψ(Ṽ )− µβ(ψ)

∣∣∣]︸ ︷︷ ︸
:=δ2ε

.

Besides, δ1
ε ≤ 2‖ψ‖∞P(Ṽ 6= V(t−h)/ε) = 2‖ψ‖∞‖L(V(t−h)/ε) − µβ‖TV −→

ε→0
0, since µβ is the invariant

measure of (Vt)t≥0. For the same reason, using the dominated convergence theorem, δ2
ε −→
ε→0

0.
Step 2: Conclusion.
Fix h ∈ (0, t). One can write ∆ε ≤ ∆1

ε,h + ∆2
ε,h + ∆3

ε,h + ∆4
h, where

∆1
ε,h :=

∣∣∣E [φ(v(β)
ε Xt/ε)ψ(Vt/ε)

]
− E

[
φ(v(β)

ε X(t−h)/ε)ψ(Vt/ε)
]∣∣∣

∆2
ε,h :=

∣∣∣E [φ(v(β)
ε X(t−h)/ε)ψ(Vt/ε)

]
− E

[
φ(v(β)

ε X(t−h)/ε)
]
µβ(ψ)

∣∣∣
∆3
ε,h :=

∣∣∣E [φ(v(β)
ε X(t−h)/ε)

]
µβ(ψ)− E

[
φ(X

(β)
t−h)

]
µβ(ψ)

∣∣∣
∆4
h :=

∣∣∣E [φ(X
(β)
t−h)

]
µβ(ψ)− E

[
φ(X

(β)
t )

]
µβ(ψ)

∣∣∣ .
By Theorem 2.1.1, ∆3

ε,h −→ε→0
0 and by step 1 ∆2

ε,h ≤ ‖φ‖∞δε −→ε→0
0. Besides, set C := ‖ψ‖∞(‖φ‖∞ +

‖φ′‖∞,K), where the compact setK is chosen such that for ε and h small enough, (v
(β)
ε Xt/ε, v

(β)
ε X(t−h)/ε) ∈

K2. Then, by the dominated convergence theorem,

lim sup
ε→0

∆1
ε,h ≤ C lim sup

ε→0
E
[∣∣∣v(β)

ε Xt/ε − v(β)
ε X(t−h)/ε

∣∣∣ ∧ 1
]

= CE
[∣∣∣X(β)

t −X(β)
(t−h)

∣∣∣ ∧ 1
]
−→
h→0

0

Likewise, ∆4
h −→
h→0

0.

This ends the proof of Corollary 2.1.2.
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Chapter 3

Asymptotic behaviour of solution of a
time-inhomogeneous kinetic equation

3.1 Introduction and main result

One can focus now on time-inhomogeneous kinetic equation. Consider the stochastic kinetic model:

Vt = V0 +Bt + ρ

∫ t

0

sgn(Vs) |Vs|α

sβ
ds,

Xt = X0 +

∫ t

0
Vs ds,

(3.1)

where α, β, ρ ∈ R and (Bt)t≥0 is a Brownian motion. In [Off12], the asymptotic behaviour of the
velocity process is studied. The interest is now on the asymptotic behaviour of the position process.
Thanks to [Propositions 2.3.2 and 2.3.6 in Off12], there exists a pathwise unique strong solution (Vt)t≥0

defined up to the explosion time, which is almost surely finite, and it is a Markov process.

Theorem 3.1.1. Consider ρ < 0, α ≥ 0, and β ∈ R such that 2β − (α + 1) > 0. Let (Vt, Xt)t≥0 be a
solution of (3.1). Then, as ε converges to 0,

(ε3/2Xt/ε)t≥1
f.d

=⇒ (βt3/3)t≥1.

Here (βt)t≥0 is a Brownian motion.

Remark 3.1.1. If one tries to adapt the proof of Theorem 2.1.1 i) naively, one is led to find a solution
to

∂g

∂v
(s, v)ρ

sgn(v) |v|α

sβ
+
∂g

∂s
(s, v) +

1

2

∂2g

∂2v
(s, v) = −v.

But this PDE is ill-posed. Thus one has to proceed quite differently, this is due to the time-dependance
of the stochastic differential equation satisfied by the velocity process.

3.2 Study of a changed-of-time process

Following the idea used in [Off12], one can perform first a change of time in (3.1). Denoting by
φe : t 7→ et the exponential change of time, the exponential scaling transformation is then given by

Φe(ω) : s ∈ R+ 7→ ωes

es/2
, for ω ∈ Ω. Set V (e) := Φe(V ) and X(e)

t :=
∫ t

0
V

(e)
s ds, for t ≥ 0.

The process V (e) satisfies the equation

dV (e)
s = dWs −

V
(e)
s

2
ds+ ρe(α+1

2
−β)s sgn(V (e)

s )
∣∣∣V (e)
s

∣∣∣α ds, (3.2)

where (Wt)t≥0 is a Brownian motion.
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Remark 3.2.1. Observe the time-inhomogeneous part: leaving out the last term, it yields the equation
of the Ornstein-Ulhenbeck process:

dUs = dWs −
Us
2

ds.

The last term in (3.2) seems to be negligible.

Lemma 3.2.1. If ρ < 0, α > −1 and 2β − (α+ 1) > 0, then, for all t ≥ 0,

lim
ε→0

V
(e)
t/ε

L
= N (0, 1).

Moreover, almost surely, lim sup
t→∞

∣∣∣V (e)
t

∣∣∣√
2 ln(t)

= 1.

Proof. The convergence in distribution comes from the proof of [Theorem 2.4.6 (2.4.15) in Off12],

Besides, by [2.4.15 in Off12], lim sup
t→∞

V
(e)
t√

2 ln(t)
= 1. But (−V (e)

t )t≥0 satisfies the same equation as

(V
(e)
t )t≥0. So, one can adapt the proof of [Off12] in order to find that

1 = lim sup
t→∞

−V (e)
t√

2 ln(t)
= − lim inf

t→∞

V
(e)
t√

2 ln(t)
.

So that lim inf
t→∞

V
(e)
t√

2 ln(t)
= −1. The conclusion follows.

Lemma 3.2.2. If ρ < 0, α ≥ 0 and 2β − (α+ 1) > 0, then, as ε tends to 0,

(
√
εX

(e)
t/ε)t≥0

f.d
=⇒ (2Wt)t≥0.

Proof. If g ∈ C2, by Itô’s formula,

dg(V (e)
s ) = g′(V (e)

s ) dWs +

(
1

2
g′′(V (e)

s )− g′(V (e)
s )

V
(e)
s

2

)
ds+ g′(V (e)

s )ρe(α+1
2
−β)s sgn(V (e)

s )
∣∣∣V (e)
s

∣∣∣α ds.

One would like the second term in the right-hand side to be equal to −V (e)
s . Taking g : v 7→ 2v yields

2 dV (e)
s = 2 dWs − V (e)

s ds+ 2ρe(α+1
2
−β)s sgn(V (e)

s )
∣∣∣V (e)
s

∣∣∣α ds.

It follows that

X
(e)
t = 2V

(e)
0 − 2V

(e)
t + 2Wt +

∫ t

0
2ρe(α+1

2
−β)s sgn(V (e)

s )
∣∣∣V (e)
s

∣∣∣α ds. (3.3)

By Lemma 3.2.1, lim
ε→0

V
(e)
t/ε

L
= N (0, 1). For ε > 0, setting vε −→

ε→0
0 for the rate, one can write

vεX
(e)
t/ε = 2vεV

(e)
0 − 2vεV

(e)
t/ε︸ ︷︷ ︸

↪→0 a.s.
by Slutsky lemma

+2vεWt/ε + vε

∫ t/ε

0
2ρe(α+1

2
−β)s sgn(V (e)

s )
∣∣∣V (e)
s

∣∣∣α ds.

With vε =
√
ε it becomes

√
εX

(e)
t/ε = 2

√
εV

(e)
0 − 2

√
εV

(e)
t/ε︸ ︷︷ ︸

↪→0 a.s.

+ 2
√
εWt/ε︸ ︷︷ ︸
L
=2Wt

+
√
ε

∫ t/ε

0
2ρe(α+1

2
−β)s sgn(V (e)

s )
∣∣∣V (e)
s

∣∣∣α ds. (3.4)

The dominated convergence theorem can be applied to the last term:
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• For s ≥ 0,
√
ε1[0,t/ε]2ρe

(α+1
2
−β)s sgn(V

(e)
s )

∣∣∣V (e)
s

∣∣∣α −→
ε→0

0.

• For all ε < 1 and s ≥ 0,∣∣∣√ε1[0,t/ε]2ρe
(α+1

2
−β)s sgn(V (e)

s )
∣∣∣V (e)
s

∣∣∣α∣∣∣ ≤ 1R+2 |ρ| e(α+1
2
−β)s

∣∣∣V (e)
s

∣∣∣α ∈ L1,

since α ≥ 0 and lim sup
t→∞

∣∣∣V (e)
t

∣∣∣√
2 ln(t)

= 1 a.s. (see Lemma 3.2.1).

One concludes as in the proof of Theorem 2.1.1 i).

The Figure 3.1 illustrates this convergence.

Figure 3.1: Distribution of
√
εX

(e)
t/ε and overlay with a Gaussian random variable N (0, 4t), with t = 7

and ε = 10−4.

Moreover, one can give a speed for the convergence:

Lemma 3.2.3. If ρ < 0, α ≥ 0 and 2β − (α+ 1) > 0, then, lim sup
t→∞

X
(e)
t

2
√

2t ln(ln(t))
= 1 almost surely.

Proof. By the law of iterated logarithm for the Brownian motion,

lim sup
t→∞

Wt√
2t ln(ln(t))

= 1 almost surely.

From (3.3), it follows that a.s.

lim sup
t→+∞

X
(e)
t

2
√

2t ln(ln(t))
= lim sup

t→+∞

2V
(e)

0√
2t ln(ln(t))

− lim sup
t→+∞

V
(e)
t√

2t ln(ln(t))
+ lim sup

t→+∞

Wt√
2t ln(ln(t))

+ ρ lim sup
t→+∞

1√
2t ln(ln(t))

∫ t

0
e(α+1

2
−β)s sgn(V (e)

s )
∣∣∣V (e)
s

∣∣∣α ds

= lim sup
t→+∞

V
(e)
t√

2 ln(t)

√
2 ln(t)√

2t ln(ln(t))
+ 1

+ ρ lim sup
t→+∞

1√
2t ln(ln(t))

∫ t

0
e(α+1

2
−β)s sgn(V (e)

s )
∣∣∣V (e)
s

∣∣∣α ds

= 1 + ρ lim sup
t→+∞

1√
2t ln(ln(t))

∫ t

0
e(α+1

2
−β)s sgn(V (e)

s )
∣∣∣V (e)
s

∣∣∣α ds.
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One can shows that lim sup
t→+∞

1√
2t ln(ln(t))

∫ t

0
e(α+1

2
−β)s sgn(V (e)

s )
∣∣∣V (e)
s

∣∣∣α ds = 0 almost surely. Indeed,

since lim sup
t→∞

∣∣∣V (e)
t

∣∣∣√
2 ln(t)

= 1 a.s.,then, for all ε > 0, there exists A > 1 such that

∣∣∣V (e)
t

∣∣∣√
2 ln(t)

< 1 + ε. It

follows that

lim sup
t→+∞

1√
2t ln(ln(t))

∫ t

0
e(α+1

2
−β)s sgn(V (e)

s )
∣∣∣V (e)
s

∣∣∣α ds = lim sup
t→+∞

1√
2t ln(ln(t))

∫ t

A
e(α+1

2
−β)s sgn(V (e)

s )
∣∣∣V (e)
s

∣∣∣α ds.

Then, for all t ≥ A,

1√
2t ln(ln(t))

∣∣∣∣∫ t

A
e(α+1

2
−β)s sgn(V (e)

s )
∣∣∣V (e)
s

∣∣∣α ds

∣∣∣∣ ≤ 1√
2t ln(ln(t))

∫ t

A
e(α+1

2
−β)s

∣∣∣V (e)
s

∣∣∣α ds

≤
√

2 ln(t)
α√

2t ln(ln(t))

∫ t

A
e(α+1

2
−β)s

∣∣∣V (e)
s

∣∣∣α√
2 ln(s)

α

(
ln(s)

ln(t)

)α/2
ds

≤ (1 + ε)α
√

2 ln(t)
α√

2t ln(ln(t))

∫ t

A
e(α+1

2
−β)s ds, since α ≥ 0

≤ (1 + ε)α

α+1
2 − β

√
2 ln(t)

α√
2t ln(ln(t))

[
e(α+1

2
−β)t − e(α+1

2
−β)A

]
−→
t→+∞

0,

because α+1
2 − β < 0. This concludes the proof.

In fact, it is possible to find a formula for V (e):

Lemma 3.2.4. For all t ≥ 0,

V
(e)
t = V

(e)
0 e−t/2 +

∫ t

0
e−(t−s)/2 dWs + ρ

∫ t

0
e−(t−s)/2e(α+1

2
−β)s sgn(V (e)

s )
∣∣∣V (e)
s

∣∣∣α ds. (3.5)

Proof. Writing differently (3.2), one has

dV (e)
s +

V
(e)
s

2
ds = dWs + ρe(α+1

2
−β)s sgn(V (e)

s )
∣∣∣V (e)
s

∣∣∣α ds

This can be solved, using the method of variation of parameters. Indeed, V (e) can be written as
V

(e)
t = Cte

−t/2, for t ≥ 0. Here C is a process that must be determined. It satisfies

dCs = es/2 dWs + ρe(α+1
2
−β)ses/2 sgn(V (e)

s )
∣∣∣V (e)
s

∣∣∣α ds.

Hence, for all t ≥ 0,

Ct = V
(e)

0 +

∫ t

0
es/2 dWs +

∫ t

0
ρe(α+1

2
−β)ses/2 sgn(V (e)

s )
∣∣∣V (e)
s

∣∣∣α ds.

This ends the proof.

Remark 3.2.2. V (e)
t can be written as V (e)

t = Ṽ
(e)
t + Ut, where Ṽ (e) is an Ornstein Ulhenbeck process

and Ut :=
∫ t

0
ρe−(t−s)/2e(α+1

2
−β)s sgn(V

(e)
s )

∣∣∣V (e)
s

∣∣∣α ds. This is useful for the simulation.
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3.3 Proof of Theorem 3.1.1

In this section, ρ < 0, α ≥ 0, and β ∈ R are such that 2β − (α+ 1) > 0.
The goal is know to find the asymptotic behaviour of (Xt)t≥0.
Step 1: Write (Xt)t≥0 as a function of (X

(e)
t )t≥0.

Firstly, for all t ≥ 0,

X
(e)
t =

∫ t

0
V (e)
s ds =

∫ et

1

Vu

u3/2
du

IBP
=

Xet

e3t/2
−X1 +

3

2

∫ et

1

Xs

s5/2
ds

= Xete
−3t/2 −X1 +

3

2

∫ t

0
Xeue

−3u/2 du. (3.6)

Setting vε −→
ε→0

0 for the rate, this yields, for ε > 0,

vεX
(e)
t/ε = Xet/εvεe

−3t/2ε − vεX1 +
3vε
2

∫ t/ε

0
Xeue

−3u/2 du

= Xet/εvεe
−3t/2ε − vεX1 +

3vε
2ε

∫ t

0
Xes/εe

−3s/2ε ds

But the behaviour of the third term of the right-hand side is unknown. However, observe that (3.6)

may be written, setting G : t 7→
∫ t

0
Xeue

−3u/2 du, as

G′(t) +
3

2
G(t) = X

(e)
t +X1, G(0) = 0.

This ODE can be solved :

G : t 7→e−3t/2

∫ t

0

(
X(e)
s +X1

)
e3s/2 ds = e−3t/2

∫ t

0
X(e)
s e3s/2 ds+

2

3
X1(1− e−3t/2).

Hence, using the two equality of G′, one obtains that, for all t ≥ 0,

Xete
−3t/2 = X

(e)
t −

3

2
e−3t/2

∫ t

0
X(e)
s e3s/2 ds+X1e

−3t/2.

This yields

Xet/εe
−3t/2ε = X

(e)
t/ε −

3

2
e−3t/2ε

∫ t/ε

0
X(e)
s e3s/2 ds+X1e

−3t/2ε

= X
(e)
t/ε −

3

2ε
e−3t/2ε

∫ t

0
X

(e)
u/εe

3u/2ε du+X1e
−3t/2ε.

Step 2: Study of the middle term.

Since for u ≥ 0, X(e)
u/ε =

1

ε

∫ u

0
V

(e)
s/ε ds, one gets

3

2ε
e−3t/2ε

∫ t

0
X

(e)
u/εe

3u/2ε du =
3

2ε2
e−3t/2ε

∫ t

0

∫ u

0
V

(e)
s/ε dse3u/2ε du =

3

2ε2
e−3t/2ε

∫ t

0
V

(e)
s/ε

∫ t

s
e3u/2ε duds

=
3

2ε2
e−3t/2ε

∫ t

0
V

(e)
s/ε

2ε

3

(
e3t/2ε − e3s/2ε

)
ds

=
1

ε

(∫ t

0
V

(e)
s/ε ds− e−3t/2ε

∫ t

0
V

(e)
s/ε e

3s/2ε ds

)
= X

(e)
t/ε −

1

ε
e−3t/2ε

∫ t

0
V

(e)
s/ε e

3s/2ε ds.

It yields

Xet/εe
−3t/2ε = e−3t/2ε

∫ t/ε

0
V (e)
s e3s/2 ds+X1e

−3t/2ε. (3.7)
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Moreover, applying Itô’s formula,

V
(e)
t/ε e

3t/2ε = V
(e)

0 +
3

2

∫ t/ε

0
V (e)
s e3s/2 ds+

∫ t/ε

0
e3s/2 dV (e)

s

= V
(e)

0 +

∫ t/ε

0
V (e)
s e3s/2 ds+

∫ t/ε

0
e3s/2 dWs +

∫ t/ε

0
e3s/2ρe(α+1

2
−β)s sgn(V (e)

s )
∣∣∣V (e)
s

∣∣∣α ds.

Hence,

Xet/εe
−3t/2ε = e−3t/2ε(X1 − V (e)

0 ) + V
(e)
t/ε − e

−3t/2ε

∫ t/ε

0
e3s/2 dWs

− e−3t/2ε

∫ t/ε

0
e3s/2ρe(α+1

2
−β)s sgn(V (e)

s )
∣∣∣V (e)
s

∣∣∣α ds.

It follows, for all u ≥ 1,

ε3/2Xu/ε = ε3/2(X1−V (e)
0 )+u3/2V

(e)
ln(u

ε
)−ε

3/2

∫ ln(u
ε

)

0
e3s/2 dWs−ε3/2

∫ ln(u
ε

)

0
e3s/2ρe(α+1

2
−β)s sgn(V (e)

s )
∣∣∣V (e)
s

∣∣∣α ds.

(3.8)
Step 3: Letting ε→ 0.
The first and the last terms converge to 0 a.s. by the dominated convergence theorem:

• For all s ≥ 0, ε3/21[0,ln(u/ε)]e
3s/2ρe(α+1

2
−β)s sgn(V

(e)
s )

∣∣∣V (e)
s

∣∣∣α −→
ε→0

0 a.s.

• For all ε > 0 and s ≥ 0,∣∣∣ε3/21[0,ln(u/ε)]e
3s/2ρe(α+1

2
−β)s sgn(V (e)

s )
∣∣∣V (e)
s

∣∣∣α∣∣∣ = u3/2 1[0,ln(u/ε)]e
−3(ln(u/ε)−s)

2︸ ︷︷ ︸
≤1

|ρ| e(α+1
2
−β)s

∣∣∣V (e)
s

∣∣∣α
≤ u3/2 |ρ| e(α+1

2
−β)s

∣∣∣V (e)
s

∣∣∣α 1R+(s) ∈ L1, as seen before.

Then, one can write, for all u ≥ 1,

ε3/2Xu/ε = Y ε
u + u3/2V

(e)
ln(u

ε
) − ε

3/2

∫ ln(u
ε

)

0
e3s/2 dWs,

where Y ε
u −→
ε→0

0 almost surely. Using Lemma 3.2.4, it becomes

ε3/2Xu/ε = Y ε
u +
√
εuV

(e)
0 +

∫ ln(u
ε

)

0

[
u3/2e−

ln(uε )−s
2 − ε3/2e3s/2

]
dWs

+ u3/2

∫ ln(u
ε

)

0
ρe(α+1

2
−β)se−

ln(uε )−s
2 sgn(V (e)

s )
∣∣∣V (e)
s

∣∣∣α ds.

The last term converges to 0 a.s. by the dominated convergence theorem:

• For all s ≥ 0, u3/21[0,ln(u/ε)]ρe
(α+1

2
−β)ses/2

√
ε
u sgn(V

(e)
s )

∣∣∣V (e)
s

∣∣∣α −→
ε→0

0 a.s.

• For all ε > 0 and s ≥ 0,∣∣∣∣u3/2ρe(α+1
2
−β)s1[0,ln(u/ε)]e

− ln(uε )−s
2 sgn(V (e)

s )
∣∣∣V (e)
s

∣∣∣α∣∣∣∣ = u3/2 |ρ| e(α+1
2
−β)s 1[0,ln(u/ε)]e

− ln(uε )−s
2︸ ︷︷ ︸

≤1

∣∣∣V (e)
s

∣∣∣α
≤ u3/2 |ρ| e(α+1

2
−β)s

∣∣∣V (e)
s

∣∣∣α 1R+(s) ∈ L1,

as already seen.
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It follows that, for all u ≥ 1,

ε3/2Xu/ε = Zεu +

∫ ln(u
ε

)

0

[
u3/2e−

ln(uε )−s
2 − ε3/2e3s/2

]
dWs︸ ︷︷ ︸

:=ε3/2Mln(uε )

,

where Zεu converges to 0 almost surely andMt :=
∫ t

0

(
e3t/2e−

t−s
2 − e3s/2

)
dWs. The process (Mt)t≥0 is

a continuous local martingale, vanishing at 0, with bracket 〈M,M〉t =
(et − 1)3

3
. Hence 〈M,M〉∞ =∞,

so by Dambis-Dubins-Schwarz theorem ([Theorem 1.6 page 181 in RY99]), there exists a Brownian
motion (βt)t≥0 such that Mt = β(et − 1)3

3

. One can then write

ε3/2Xu/ε = Zεu + ε3/2β (u/ε−1)3

3

L
= Zεu + β (u−ε)3

3

.

Then it suffices to apply Lemma A.0.2, as in the proof of Theorem 2.1.1 i).

This ends the proof of Theorem 3.1.1.

This convergence can be illustrated, using the equality (3.7) and Remark 3.2.2, by Figures 3.2 and
3.3, depending on which way the simulation is done. See Appendix B for details.

Figure 3.2: Distribution of ε3/2Xt/ε ≈
ε3/2

∫ log(t/ε)
0 Ṽ

(e)
s e3s/2 du and overlay with a

Gaussian random variable N (0, t3/3), for t = 7
and ε = 10−4.

Figure 3.3: Distribution of ε3/2Xt/ε ≈
ε3/2

∫ log(t/ε)
0 (Ṽ

(e)
s +Us)e

3s/2 du and overlay with
a Gaussian random variableN (0, t3/3), for t = 7
and ε = 10−4.
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Appendix A

Technical results

Lemma A.0.1. Let G : R → R be a positive function which could be zero only at isolated points.

Consider (Wt)t≥0 a real Brownian motion. Then
∫ +∞

0
G(Ws) ds = +∞ almost surely.

Proof. Choose x ∈ R and ε > 0 such that G(]x − 2ε, x + 2ε[) ⊂ R+∗. Then if Ws ∈ [x − ε, x + ε],
G(Ws) ≥ inf

[x−ε,x+ε]
G > 0. Define the stopping times τ0 = inf{t ≥ 0,Wt ∈]x − ε, x + ε[}, σ0 = inf{t ≥

τ0,Wt /∈]x−ε, x+ε[} and for i ≥ 0, τi+1 := inf{t ≥ σi,Ws ∈]x−ε, x+ε[} and σi+1 = inf{t ≥ τi+1,Wt /∈
]x− ε, x+ ε[}. Then ∫ +∞

0
G(Ws) ds ≥

∑
i

∫ σi

τi

G(Ws) ds.

But, thanks to strong Markov property, Yi :=
∫ σi

τi
G(Ws) ds are i.i.d. random variables with positive

expectation. Hence, by the law of large numbers,
∑

i

∫ σi

τi
G(Ws) ds = +∞ almost surely.

Lemma A.0.2. Let S be a separable metric space. Let (Yn, Zn) ∈ S ×S be a sequence of processes on
S such that Yn =⇒ Y (for the convergence in law in S) and ρ(Yn, Zn)

P→ 0 where ρ is a metric on S.
Then Zn =⇒ Y .

Proof. See [Theorem 3.1 p. 27 in Bil99].

Lemma A.0.3. If Yε
L

=⇒ Y in C := C([0,+∞[), and the sequence of functions (gε)ε>0 converges
uniformly to some continuous function g. Then gε(Yε)

L
=⇒ g(Y ).

Proof. Let h be a bounded and uniformly continuous function, one has to show that E[h ◦ gε(Yε)] −→
ε→0

E[h ◦ g(Y )]. One can write

E[h ◦ gε(Yε)] = E[h ◦ gε(Yε)− h ◦ g(Yε)] + E[h ◦ g(Yε)].

The second term converges to E[h ◦ g(Y )] since (Yε)ε>0 converges in distribution towards Y and h ◦ g
is continuous and bounded. It remains to show that E[h ◦ gε(Yε) − h ◦ g(Yε)] −→

ε→0
0. h is uniformly

continuous and (gε)ε>0 converges uniformly to g so (h ◦ gε)ε>0 converges uniformly to h ◦ g. Then
|E[h ◦ gε(Yε)− h ◦ g(Yε)]| ≤‖ h ◦ gε − h ◦ g ‖∞−→

ε→0
0.

Proposition A.0.1. Let M ⊂ M1(C([0, T ])) be tight. Then lim
δ→0

sup
µ∈M

µ({x|wδ(x) ≥ η}) = 0, where

wδ(f) := sup{|f(t)− f(s); s, t ∈ [0, T ], |t− s| ≤ δ|}, for every f ∈ C([0, T ])..

Proof. See [Theorem 7.3 p. 82 in Bil99].

Lemma A.0.4. Let, for n ≥ 1, (ant )t≥0 be a continuous increasing bijective function from R+ to itself,
as well as its inverse (rnt )t≥0.
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1. Assume that (ant )t≥0 converges pointwise to some function (at)t≥0 such that lim
t→+∞

at = +∞, call

rt = inf{u ≥ 0, au > t}, its right-continuous generalized inverse, and set J = {s ≥ 0, rt− < rt}.
Then, for all t ∈ R+\J , lim

t→+∞
rnt = rt.

2. If (ant )t≥0 converges (locally) uniformly to some strictly increasing function (at)t≥0 such that
lim

t→+∞
at = +∞, then (rnt )t≥0 converges (locally) uniformly to (rt)t≥0, the inverse of (at)t≥0.

Lemma A.0.5. Consider a Brownian motion (Wt)t≥0 and denote by (Lxt )t≥0 its local time at x ∈ R.
Then for all T > 0, sup

[0,T ]×R
Lxt is almost surely finite.

Proof. Fix T > 0 and t ∈ [0, T ] and x ∈ R. Firstly, one has Lxt ≤ LxT . Moreover, by Tanaka formula,

LxT = |WT − x| − |x| −
∫ T

0
sgn(Ws − x) dWs ≤ |WT |+ |x| − |x|+

∫ T

0
|dWs| .

Thus, sup
[0,T ]×R

Lxt ≤ sup
R
LxT ≤ 2 |WT | < +∞ almost surely.
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Appendix B

Scilab code

Here is the main code used to do the simulation.

function [MB]=Brownian_motion(t,N)
h=t/N
acc = grand(1,N,"nor",0,sqrt(h))
MB=zeros(1,N+1)
for k=2:N+1

MB(k) = MB(k-1)+acc(k-1)
end

endfunction

Listing B.1: To simulate a standard Brownian motion

function []=distribution_Xe(M,epsilon,t,N,rho,alpha,bet)
// M is the number of simulations
h=t/N
a=(alpha+1)/2-bet
Y=[]
for i=1:M

MB=Brownian_motion(t,N)
G=grand(1,N+1,"nor",0,1)
x=[0:h:t]
y=zeros(G)
for k=1:N

y(k+1)=(2*rho*(abs(G(k+1)))^(alpha))*sign(G(k+1))
*exp((a*k*h)/(epsilon))

end
j=inttrap(x,y)
Yt=-2*sqrt(epsilon)*G(N+1)+2*MB(N+1)+j/sqrt(epsilon)
Y=[Y,Yt]

end
histplot(100,Y)
z=-16:0.1:16
s=4*t
plot2d(z,exp(-z.^2/(2*s))/sqrt(2*%pi*s),2)

endfunction

Listing B.2: To print the distribution of
√
εX

(e)
t/ε .

Remark B.0.1. It uses (3.4), where V (e)
t/ε is approximated by a normal distribution.

function []=distribution_X_with_OU(M,epsilon,t,N,rho,alpha,bet)
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// M is the number of simulations
h=log(t/epsilon)/N
a=(alpha+1)/2-bet
speed=(epsilon)^(1.5)
Y=[]
for i=1:M

x=[0:h:log(t/epsilon)]
y=zeros(x)
for k=1:N

OU=grand(1,1,"nor",0,sqrt(1-exp(-k*h)))
y(k+1)=OU*exp(3*k*h/2)

end
j=inttrap(x,y)
Yt=speed*j
Y=[Y,Yt]

end
z=-34:0.1:34
histplot(100,Y)
s=t^3/3
plot2d(z,exp(-z.^2/(2*s))/sqrt(2*%pi*s),17)

endfunction

Listing B.3: To print the distribution of ε3/2Xt/ε ≈ ε3/2
∫ log(t/ε)

0 Ṽ
(e)
s e3s/2du.

function []=distribution_X(M,epsilon,t,N,rho,alpha,bet)
// M is the number of simulations
h=log(t/epsilon)/N
a=(alpha+1)/2-bet
speed=(epsilon)^(1.5)
Y=[]
for l=1:M

// Computation of \tilde(V):
S1=[]
for k=1:N

for j=1:N
S1=[S1,j*k*h/N]

end
end
S=unique(S1)
Vtilde=[]
for i=1:length(S)

v=grand(1,1,"nor",0,sqrt(1-exp(-S(i))))
Vtilde=[Vtilde,v]

end
x=[0:h:log(t/epsilon)]
y=zeros(x)
for k=1:N

s=k*h
//computation of U(s)
h2=s/N
x2=[0:h2:s]
u=zeros(x2)
for j=1:N

i=find(S==j*k*h/N)
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v2=Vtilde(i)
u(j+1)=exp((a+0.5)*j*h2)*sign(v2)*abs(v2)^(alpha)

end
Us=exp(-s/2)*inttrap(x2,u)
i=find(S==N*k*h/N)
y(k+1)=(Vtilde(i)+Us)*exp(3*s/2)

end
I=inttrap(x,y)
Yt=speed*I
Y=[Y,Yt]

end
z=-34:0.1:34
sig=t^3/3
histplot(100,Y)
plot2d(z,exp(-z.^2/(2*sig))/sqrt(2*%pi*sig),17);

endfunction

Listing B.4: To print the distribution of ε3/2Xt/ε ≈ ε3/2
∫ log(t/ε)

0
(Ṽ

(e)
s + Us)e

3s/2du.

Remark B.0.2. The process (Ut)t≥0 defined in Remark 3.2.2 has been approximated by

Ũt :=
∫ t

0
ρe−(t−s)/2e(α+1

2
−β)s sgn(Ṽ (e)

s )
∣∣∣Ṽ (e)
s

∣∣∣α ds.
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