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Abstract

We consider a particle moving in a one-dimensional potential, which is at first time-homogeneous.
The first part comes from an article from Nicolas Fournier and Camille Tardif [FT18|. We see the
asymptotic behaviour of the position process: it behaves as a Brownian motion for § > 5, a stable
process for § € [1,5) and as an integrated symmetric Bessel process if § € (0,1). In the second part,
we study the time-inhomogeneous case. Starting from the velocity process studied by Yoann Offret in
his thesis |Off12], for the attractive case and above the critical line: 28 > « + 1, we prove that the
position process behaves asymptotically as a time-changed Brownian motion.

This document is the report of an internship done during the second year of master. It was supervised
by Mihai Gradinaru at the University of Rennes 1.
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Chapter 1

Introduction

In this paper, we consider a one-dimensional stochastic kinetic model driven by a Brownian motion.
Let us denote by X; the one-dimensional process describing the position of a particle at time ¢t > 0,
having the speed V;:

t
Xt = X(] + / V; ds.
0
The velocity process (V;) is supposed to be a Brownian process in a potential U (t, v):
1
dV; =dB; — iavU(t, Vi) dt.
In the first part, the potentiel U is supposed to be independent of time and satisfying
,19/
UWw) =—-p—
WU (w) =~

where 8 > 0 and ¥ : R — (0, +00) is an even function of class C? satisfying lim |v]9¥(v) = 1. All the

|v]—o0
results of this part come from [ET18§].
In the second part, the potential is supposed to depend on time and to verify

_2 Oé+1
) Gl T

U(t,v) = aéi—% (tﬂ
—2plog(jv]) e .

8

Here p < 0, @ > 0, and 8 € R are such that 25— (a+ 1) > 0 in order to use results from [Off12]. What
is the asymptotic behaviour of the position process X, /., as € — 0 7 We give an answer in the second
part.



Chapter 2

Asymptotic behaviour of solution of a
time-homogeneous kinetic equation

2.1 Introduction and main results

Consider, for two random variables (Xo, V) and a Brownian motion (B;)¢>o independent from (X, V5),
the stochastic kinetic model: .
W:Vo-i-Bt—g F(Vy)ds,
0
. (2.1)
Xt = XO + / V; dS,
0

where 8 > 0. Assume that the potential F' is of the form

/
F = —— where ¥ : R — (0,4+00) is an even function of class C? satisfying

3 m |v|d(v) =1. (2.2)

li
|v]—o0

In particular F is C' and thus is locally Lipschitz. One can keep in mind the example F' : v —
—-1/2

1402
which comes from ¥ : v — (1 + v?) . The system ({2.1) could be seen as a model for a particle
motion in a one-dimensional potential.

One can observe that, since the drift and the diffusion coeflicient are locally Lipschitz, then has
a unique local strong solution and it is a Markov process (see [Theorem 3.1 p. 178 in [WISI]).

Moreover,

Lemma 2.1.1. If it exists, the invariant measure pg of the velocity process (Vi)i>o ts solution of

1
§'ug + g(F,ug)’ = 0 in the sense of distributions. The unique (up to constant) solution is
p(dv) = e5(9(0)° do, (23)
o JRP@))Pdv < 400 if B> 1,
with ¢~ = { 1 if B € (0,1].

1
Proof. The infinitesimal generator of V' is given by Lf(x) = —gF(x)f’(ac) + if”(x). The measure g
is invariant if and only if for all functions f € D(L) C C*°(R), /Lf(x)ug(dx) =0 (see [Prop 4.5 p.293
1 1
in[WI8I1]). It is equivalent to say that (g(F,u/g)’ + i,ug, fy=0forall f € D(L)i.e. i,ug—i—g(F,uﬁ)’ =0
in the sense of distributions. O

Remark 2.1.1. pg is a probability measure for § > 1, by Riemann criterion, using (2.2).

For a family ((Zf)i>0)e>0 of processes, the notation (Zf)i>o L4, (Z2)i>0 is used if, for all finite
subset S C [0, 400), the vector (Zf)ies converges in distribution towards (Z));es as € — 0, and the



notation (Zf)i>0 = (Z)1>0 is used if the convergence in distribution holds in the usual sense for
continuous processes.

The main results of this part are the following:

Theorem 2.1.1. Consider 3 > 0 and let (Vz, Xt)t>0 be a solution to (2.1). Then, as € converges to 0,

i) I B> 5, (VeXyizo 2% (058:)i>0.

. . € f.d
“) If B =5, < lOgEXt/E)tZO — (0'5,8,5),520,

iii) If B € (1,5), (/eXi))ez0 £ (0551 )0, where a = (54 1)/3.

. d
i) If B=1, (|eloge*’? X,/)i20 £2 (015%)150.

t
) 15 e (0.1), (VeViye /X0 < (0, [0 as)

>0

Here (Bt)i>0 is a Brownian motion, (St(a))tzo is a symmetric stable process with index o € (0,2)
such that E [exp(iuSga))} = exp(—t|u|”) and (Ut((;))tzg is a symmetric Bessel process of dimension
0 €(0,1). For each 8 > 1 the constant oz > 0 is defined by

o0 oo 2
oor%:SCB/OJr 9B (v) [/+ uﬁﬁ(u)du] dv, if B > 5,

o dcs
® 05 = T77
317204204716[871_
® 0 F(OZ)QSin(ﬂa/Q)’ with o« (ﬁ-i— )/3, if B € ( 75)’
L4 0'2/3 = M
' I'(2/3)?

Then one deduces the

Corollary 2.1.2. Using the same hypotheses and motations as in the previous theorem, if Vs a
random variable with law pg independent of X then, as e converges to 0,

i) If B> 5, for each t >0, (\/eXyye, Vije) = (958, V).

ZZ) If 8 =15, for each t > 0, ( L)(t/ev ‘/t/5> :L> ((75515’ ‘7)
\/ log e

iii) If B € (1,5), for each t > 0, ({/eXy/e, Vije) = (055, V), where a = (8 +1)/3.

2.2 Starting point
Introduce first some functions defined on R:
e h:v—(B+1) /Ov 19(1105 du. It is an odd, increasing, bijective function which solves h” = SFh/.
Integrating the equivalent given in (2.2), one gets h(v) |~ sgn(v) [o/°*! and h7(v) ~

[v]—o00 |v]—o0
sgn(v) [v] /Y.



ooz N (h_l(z)). It is an even function, bounded from below by some ¢ > 0. Besides, using
the previous point, o(z) ~ (B8+ 1) |z|*/ Y.
|z| =00

-1
e )z 2((Z)) Since h~! is an odd function, ¢ is, too. Using the two previous equivalents, one
o?(z
sgn(2) |Z|(1*2B)/(ﬂ+1)
Hies (B+1)?

gets ¢(2)

v +oo
e g:v—2 / 9P (x / u®(u) dudz. It is an odd function (using the fact that ¥ is even and
x
that / ud® (u) du = 0), satisfying the equation ¢”(v) — BF (v)g'(v) = —2v.

(9 (') g N
~————~~ when 8 = 5. It is an even and bounded function satisfying 1(z) ~
0?(z) 2|00

thanks to the equivalent given in (2.2)).

® Yz

81 |z|

2.2.1 Reducing to the initial condition (X, Vj) = (0,0).
One can make the proof of Theorem [2.1.T]easier, by noting that it suffices to prove it when Xy = Vj = 0.

Lemma 2.2.1. i) There exists C > 0 such that, if Vo = 0, then for all t > 0, E[V2 4 |V;|°T!] <
C(1+1).

i) Starting from any initial condition, the unique strong solution (Vi)i>o is recurrent.

iii) If Theorem is true when Xg = Vo = 0 a.s. and > 1, then it is true for any initial

condition.

iv) When B € (0, 1) it suffices to prove that (\/€Vy/e)i>0 £, (Ut(lfﬁ))tzo for Vo = 0 in order to
obtain Theorem[2.1.1] for any initial condition.

Proof. 1) Set £:v 2 /Ov 98 () /Ox 9% (u) dudz. 9 is even, then so is £. Besides, ¢ satisfies

"(v) — BF(v)l'(v) = 2.

Integrating the equivalent given in (2.2)) (it suffices to study at +o0o0 because £ is even), one gets
that there exists a constant cg > 0 such that:

e if B>1,0) ~ gl
[v]—o0

o if =1,4(v) ~ cgv’loglvl,
|v] =00

o if B€(0,1), l(v) ~ cpv?

|v]—o0

As a consequence, one can find a constant ¢ > 0 such that, for any § > 0 and v € R,
02 + [v]PT! < ¢(€(v) + 1). Taking the expectation, one deduces E [Vtg + |V}/|ﬁ+1} < c(E[((Vy)]+1).
Itd’s formula and (2.1]) yield

t
0

(o= [ eaavir g [ @ sraee)avv = [y

Taking the expectation, one gets E [¢(V;)] = ¢. This concludes the proof.



ii) The velocity process is a solution to a SDE with locally Lipschitz coefficients b = —8F/2 and

o = 1. But, using (2.2,

[ /_OOO exp (— /Oxﬁg((;)) ds) dz = /_(; exp (B1n(9(0)/9(x))) dz = /_io (ggg;)ﬁdx — oo

and, likewise,
“+o00 x /
J = / exp <—/ 519 () ds> dr = +oc.
0 19 S

Thus, by [Proposition 5.22 p.345 in [KS98|, (V;)¢>0 is a recurrent process.

iii) STEP 1: Find a solution to starting from (0, 0).
Assume 8 > 1 and suppose that Theorem u 1| holds when the initial condition is (0,0). Let
(Vi, X¢)i>0 be the solution of (2.1) starting from some (Vp,Xg). Set 7 = inf{t > 0,V; =
0}. It is an almost surely finite stopping time by recurrence of V. Consider (Vt,Xt)t>0 =

Vet = Vo, Xo gt — XT)t20~ Since (V, X) is a Markov process, by strong Markov property, (V, X)
is independent from 7. Moreover VT =0, XT =0,
15} A

Vi=Vigt — Vo= Bryy — B/ Vigs dS—Bt*§ F(Vs)ds,
0

since V; = 0, and
t ¢
Xt:X7—+t—X7—:/ ngS:/‘/t;dS
T 0
f.d
=

>0
<Xt(’8 )> 50 where the rate v!”) and the limit process (Xt(ﬁ )) L, Are given in the statement of
t t>

Theorem 2.1.1]
STEP 2: For all t > 0, v(® ’Xt/ — Xy

So, (V,X) is solution to (2.1 starting at (0,0). Hence, one knows that (UE;B)Xt/E)

*so.

2T
Fix t > 0. One has |X;, — X;,| < D' + D?*, setting D! = |Xo| + V,|ds and D> =
/ / t 0 t

l{t/e>7—}/
o ift/e <,
‘Xt/e - Xt/e = }Xt/e - XT+t/€ + XT{ < ‘Xt/s‘ + {XT-"-t/E - XT‘
t/e T+t /€
<Xl [ Wildse [T vilds
0 T
T 2T
< |X0|+/ |V;\ds+/ V.| ds = D' + D?*.
0 T
o ift/e >,
‘Xt/e - Xt/e = ’X‘F + XTJr(t/E*T) - X; - Xt/e = ‘X‘F + Xt/677' - Xt/e
T ~ ~ t/e . )
SX0‘+/ ‘%’ds—i_’Xt/ef‘r_Xt/e SD1+/ s *D1+Dt7€'
0 t/e—1
Since hné UEB ) = 0, vg )1 —> 0 a.s. and in probability, it remains to show that vgﬁ )D2 <P, 0,
€E—
as € — 0.



One can write,

. t/e
E [vgﬂ)D?’e\fT} = véﬁ)l{t/OT}E [G(T, V)\]:T} , where G : (s,v) — |vy| du,
t/e—s
= véﬁ)l{t/OT}E {G(s, V)L __, since V is independent of 7,
t/e . t/e
= 1{t/e>7—} / V du < U( )1{t/e>7—}c/ (1 + u)l/(BJrl) du
t/e—1
because, Jensen inequality and the first point yield, for all u > 0,
A |18+ .18+ - o A |B+1
E[Vu} <e |V <E|V2H V]| < +w).
Hence,
E [0 DFIF,| < 0P Lpyjenryer(1 4/ 4D < (Liyjryor) (e 4+ ) DuDe/ E4D,

In any case, liH(l) P e=1/(B+1) =, thus E [véﬁ)Df’E]}}} = 0 almost surely.
€ e—
Fix n > 0, by Markov’s inequality,

E [vgﬂ)Df’e \.7-}}

P (Ugﬁ)DtQ’e > T]’»E) < — 0 almost surely.

So, by the dominated convergence theorem, P (fugﬂ)D?’6 > 77> —0> 0 ie. fuéﬁ)D?’6 P, 0. This
e—

concludes this step.

STEP 3: Conclusion: ('Uéﬁ)Xt/e)tZO Ri:Y (Xt('@))tzo-
Fix n >0 and t1,--- ,t, > 0. By Slutsky lemma and the previous step, one has

n
5 P
DS | Xurge = Kuge| 0.
=1

By step 1, (UEB)Xti/E)lggn £ (Xt(f))lgign so Lemma|A.0.2|yields (UEB)XH/E)@Q N (Xt(_ﬂ))lgign.

k3

iv) STEP 1: The convergence of the velocity is sufficient.

1—5))

If, for any initial condition, one managed to prove that (v/eV;/¢)i>0 N (Ut( >0, then

t
(\ﬁVt/ﬁ,e?’/QXt/e)tzo = Ge(\/eV,)), where G : v <vt,e3/2X0+/0 Vg ds> is converging
>0

t
uniformly to G : v — <vt,/0 Vg ds) , as € = 0. So that, by Lemma|A.0.3

>0

(VeVie, €2 Xy im0 = (U / U)o,

Assume now that one managed to show that for Vo = 0, (v/eVy/c)i>0 £ (Ut(l_ﬁ))tzg. Consider

(Vi)e>0 a solution to (2.1) starting at Vp. And, as in the preceding proof, introduce the stopping

time 7 and the process V which satisfies (2.1) and Vo = 0. Then, one gets (\/E‘A/t/e)tZO =N

U Nis0.

STEP 2: For all T > 0, 65 := \/Esup ‘W/e - Vi/e —> 0.

Fix T > 0. Observe that ﬁsup ’Vt/E Vt/E

= e[su%)‘V;/E . Vt/€ Fix n > 0, it suffices
0



to show that P( GSUP“/t/E - V,;/6

> n) — 0. Since (ﬁfft/e) converges in law in
[OT e—0 t>0

C([0,+00)), the family {<\/E‘/t/6)t>0’ € > 0} is tight. Hence, by Proposition |A.0.1

lim sup P(wg(ﬁf/./e) >n) =0,
=0 >0

where ws(f) := sup{|f(t) — f(s); s,t € [0,T], [t — s| <4}, for every f € C([0,T]). Fix vy > 0.
Let dg > 0 be chosen such that sup P(ws,(v/€V./c) > 1) < /2. One can write,
>0

P( esup’Vt/6 - V}/e >77,67'<5()> + P(er > dy).

>77> <P< 6Sllp“/;5/6 T ‘/t/e
[0,7]

[0,7]

Since 7 is almost surely finite, er converges to 0 a.s. so in probability, consequently there exists
€o such that, for all € < ey, P(er > dp) < /2. On the other hand, on the event {eT < dp}, for

t €[0,7T],
T_‘/:f/e < sup \/> s/e ‘/t/g :’wgo(\ﬁV/e).
t,5€[0,T
[t—s|<do
[ ! ‘A/;t/s Lier<soy < wéo(\@f/./e). Hence,
0,7

P ( €sup "/t/e T V;f/e ‘Zﬁ/e 1{67’§(50} > 77)

[0,7]

>77,67'<50> <P<
[0,7]

< P(ws, (VeViye) > ) < /2.

This concludes this step.
L 1—
STEP 3: (vVe€V;/e)i>0 = (Ut( ﬁ))t>0

One knows that (\f‘/}/e)po £ (U( ﬁ))t>0 and, for all T > 0, y/e sup ’V;/G Vt/6 — 0.
[0,T]
. b >
Thus, d(v/€V. )¢, V/eV.)) — 0, where d : f,g € C([0, +00)) Z on SUP |f(t) — g(t)] is a metric

[0,7]

on C([0,4+00)). Indeed, fix n > 0 and choose N > 0 such that Zn Ne1 1/2" <n/2, then,

N
. 1 ~
d(VeV. e, VeV) <n/2+ Z o [soup] Ve ‘V;f/e — Visel -
n=0 i

It follows that

P (d(ﬁV/E, VeV, > 77) Z P (
=0

Vvt/s

>n' | —0,
[0,n) e—0

where 7’ = n(2 ;';ONH 7)1, Lemma |A.0.2] yields (v/eV;/e)i>0 £, (Ut(l_ﬁ))tzo.

2.2.2 Information on the velocity process with initial condition (0,0).

In the sequel, (W})>0 stands for a standard Brownian motion. Fix > 0, € > 0, a. > 0 and define,
€ t WS —2 . / € Wt -2 . oL

fort >0, Af=— [ o| — ds. Since, for all t > 0, AY = —o [ — is positive, then, ¢t — A
ae JO Qe Qe Qe

is a continuous increasing function. Moreover, Af = 0 and by Lemma AL, = 400 almost surely.

Thus, denoting by (7f)¢>0 its inverse, it is well defined, continuous increasing bijective from R to

itself, thanks to the monotone bijection theorem. In order to prove that (V;);>o is global, regular and

recurrent, one needs the following lemma.



Lemma 2.2.2. Set

VI/T6 1 t WS
W>w4< ﬁaMXﬁ_m?mmH}_ﬁ/¢<>@
0

Qe € Qe

If (Vi, Xt)>0 is the solution of (2.1) starting from (0,0) then (Vi/e, Xi/e)t>0 £ (VE, X5 )e>o-

Remark 2.2.1. This lemma will be again useful for the proof of Theorem by choosing the appro-
priate a..

Proof. Set Y := W;e. There exists a Brownian motion (Bf);>o such that (Y;)i>0 solves Yy =

¢ Y
a <5> dB¢ (see |Proposition 1.13 p.373 in [RY99] for details). By Ito’s formula, one can

Velo 7\ a,
€ € ! — Ytse in; 1 K — Y: d<YE7 Y€>S
1/t:VO+/O(h 1)/<ae) - +2/0(h 1)//<ae) SRS

write
€

But, (A1 (y) = a(ly) and, using the equation satisfied by h,
iy = M) BEGT G ) _ AF ()

o(y) a3(y) a?(y)

Thus,

1 t Ye 1 t
szg—ﬁ Flrt (= @:—&—é F(VE)ds.
Ve 2¢ Jo Qe Ve 2¢ Jo

On the other hand, using ([2.1)),

\% B P t/eFVd !
t/e = t/e_EO (s) S—%

Hence (V)0 and (V;/c)e>0 are solutions of two SDE driven by two Brownian processes (Bf)i>o and
(V€By/e)i>0, so they have the same law, by [Theorem 3.5 ii) in [RY99]. Besides, one gets

t/E 1 t 1 t
Xyo= [ Veas= [Weas£2 [vias
0 €Jo € Jo

1 ot
and it follows that (Vt/e, Xt/e)t>0 £ (Vf, - /0 Ve ds> . To conclude, observe that
2 €

>0

1 t 1 t VV'Te T —1 /e
/ V;ds:/ [ N i ds:aE—Q/th(VV/a)du
€ Jo € Jo e o o2(Wy/ae)

= a€_2/ t d(Wu/ae) du = Hre.
0

(VB = [ PV du

O

Definition 2.2.1. A process (V})i>0 is said to be regular if, for all z,y € R, P,(T, < c0) > 0, where
T, =inf{t > 0,V; = y}.

One is now able to obtain some information about the velocity process:
Lemma 2.2.3. The solution (Vi)i>0 to (2.1) starting at 0 is global, reqular and recurrent.

Proof. Applying Lemmawith ac = € = 1, one gets that (V4)¢>0 and (hfl(WTg))tZO have the same
law, where (7!);>0 is a continuous time-change. Hence, (V;) is defined for all times. By recurrence
of the Brownian motion, since 7' and h are bijective, (Vi)¢>0 is also recurrent. Moreover a Brownian
motion is clearly regular, then so is the velocity process, by one-to-one correspondance. O



2.3 Proof of Theorem 2.1.1]

2.3.1 Case >5

In this part, Theorem is proved for the normal diffusive case § > 5. Assume [ > 5, thanks to
Lemma one can assume Xg = Vp = 0. Since § > 1, (2.3) defines a probability measure and
hence (V;):>0 is a positive recurrent process, having its invariant probability given by (2.3).

v 400
The function g : v — 2 /0 98 (x) / w??(u) du dz, previously introduced, is an odd function
x
satisfying ¢”(v) — BF(v)g'(v) = —2v. It6’s formula yields

B

o) =9+ [ f v as [ Savrvi dst / sy s [ Vads= [ g0 anx,

0

because Xo = Vy = 0. It follows that \th/E \f/ Vi) dBs — \/eg(Vy/e).

STEP 1: For all t > 0, \/_g(V{t/e) *so.
Thanks to [Lemma 23.17 p.466 in [Kal02], V; tends in distribution towards ug, as t — 4+o00. Fix t > 0,
g is a continuous function, so g(V;/.) converges weakly to g(V), as € — 0, where V is a pg-distributed

random variable, hence, by Slutsky lemma, \/eg(V, /) 5o

t/e
STEP 2: (ME);>0 == (088t)i>0, Where M := (/e /0 g'(V,) dBs,.
By [Theorem 3.11 p. 473 in [JSO03|, (Mf)t>0 being a continuous local martingale, it suffices to show
that for all ¢ > 0, (M€, M), N O'ﬁt, as € — 0. Fix ¢ > 0, using Itd’s isometry, (M€, M), =

t/e
6/0 g (Vs)?*ds. Besides, g’ is pug-integrable:

[o@rustan =2 [ dwiuan =5 [ [0 [ wrtad " uslde) = o2,

by definition of ug. Integrating the equivalent given in (2.2), O'% is finite, hence the ergodic theorem
can be applied to find that

t/e t/e
' 2. 4€ / 2 2 _ 2
6/0 g (Vs) ds—tt/O g (Vy) ds;ﬁt/Rg dug = oat.

STEP 3: Conclusion.
Fix n > 0 and ¢1,---,t, > 0. By Slutsky lemma /e ", |g(‘/ti/6)‘ %5 0 and (M{ )1<i<n N

L
(Uﬁﬂti>1§i§n- Hence, by Lemma A.O.27 (\ﬁXti/e)ISiSn — (Uﬁﬁti)lgign-
This ends the proof of Theorem Q). O

Remark: 2 3.1. For g =5, the proof is the same, it remains to show that for all t > 0,

/ 2ds —> 05t as € — 0.
\logel

2.3.2 Case g€ (0,1)

In this part, Theorem for B € (0,1) is proved. Assume j € (0,1), thanks to Lemma [2.2.1] it
suffices to prove that (v/eV;/c)i>0 £, (Utlfﬁ))tzo, when Vp = 0.

_ ¢
Definition 2.3.1. Fix § € (0,2). Set the time-change A; := (2 — 5)*2/0 (W, | 72179/C=9) 45 and its

inverse (7¢)¢>0. Then (sgn(W=,) ]W;t\l/@_‘s))tzo is called a symmetric Bessel process of dimension §.

10



Remark 2.3.2. Call a = 2((21 _56)) < 1. Then, for all t > 0,

t t t ptoo p—ag—a?/2s
E / Ws_ads]:/E W@ ds:2// ———dazds
e o EI =2 e
t rt+oo .—a,—x2/2t ot [t
< 2/ / roe drds = 2\// %2 g < +00.
0o Jo V2ms ™ Jo

Hence, E [flt] < +00 almost surely. So, the map ¢ — Ay is almost surely continuous, strictly increasing
and by Lemma Aso = +o00. It follows that (7)¢>0 is well-defined and continuous.

Set § =1— 3 € (0,2) and consider (Ut(l_ﬁ))tzo the process, defined above, associated to (A¢)¢>0
and (7);>0. Applying Lemma [2.2.2) with a. = ¢(#*1/2 one obtains that (v/€V,)i>0 £ (VeVi/e)i>0,
where (V¢)¢>0 is the process defined in Lemma Then, it suffices to prove that (v/€V, )0 £
(U )iz0.

As in step 2 of the proof of Lemma/|2.2.1|iv), it suffices to prove that for all ' > 0, sup |/€V,* — (1 Al P,

(0,71
0, as e = 0.
STEP 1: For all T' > 0, hn(l) sup ‘Tt — Tt| = 0 almost surely.
[0,T]
Fix > 0. Sinceo >c>0and o(z) ~ (B+1) |z|’5/ (B+D there exists C > 0 such that, for all

|z| =00
z€R,072(2)<C |z|_2ﬂ/(’8+1). Thus, by the dominated convergence theorem,

~ T
aplii— )< |
0,7 0

_ _ Wg _ —
e Bo2 <e(5+1)/2> —(B+1) 2 |[Ws| 28/(B+1)] 45 ;; 0 almost surely,

Indeed, since Ar is almost surely finite,

E—BO_—2 < (Ws ) _ (B + 1)—2 |WS|726/(ﬁ+1)

RERSVY <(CH (B+1)72) W, 27D ¢ L1 ([o, ).

Besides, e Po—2 (VVS> ~ (B+1)72 \Ws\fw/(ﬁﬂ). Then, using that A, = 400, it follows, by

(B+1)/2
Lemma [A.0.4] that lim sup \Tt — T¢| = 0 almost surely.
e—0 [0 T}
STEP 2: For all T > 0, lim sup ‘W W;.t‘ = 0 almost surely.

Fix T' > 0. Since (77) converges and for all ¢ € [0,T], 77 < 77, there exists M such that Ve > 0
Vt € [0,T], 7f < M almost surely. Set M = max(M,7r). Fix n > 0, one can choose § > 0 such that

Ve,y € 0, M] |z —y| < 6= |[W, —W,| <.

Almost surely, there exists €y such that for all € < ¢, sup |77 — 7| < d, whence sup ‘Wrg — Wf—t‘ <n.

[0,T] [0,T
STEP 3: For all M > 0, k(M) := sup \/Eh_l(z/e(5+1)/2) — sgn(z) |Z|1/(ﬁ+1) —so0.
|z|<M e—0
. h(2) : : —1 o 1 p—1
Fix M > 0. Define v : z — T — L with 4(0) = —1. Since h™" is C*, h77(0) = 0 and
sgn(z) [/
h=1(2) | |~ sgn(z) |z]1/(6+1), ~ is continuous and | |hm ~v(z) = 0, hence ~ is bounded. It follows
zZ|—00 zZ|—+00
that
re(M) = sup |y(z/PHD2) [ VD) < My flog +MYEFD sup q(z/el0TD/2)
|z|<M |2|>e(B+1)/4
<M oo +MYED T sup  |y(2)] — 0.
2| > (B+1)/4 €0

11



STEP 4: Conclusion.

By step 2, M = sup sup ‘WT;
[0,7] e€(0,1)

is a.s. finite. Thus, for € € (0, 1), using steps 2 and 3,

up Vevg = vt = up ’\@h‘l(WT;/e(ﬂ“W) — sgn(Ws,) |Wﬂ|1/(5+1))

< ke(Mr) + [Souzp] ’sgn(WTte) WTte‘l/(ﬁH) —sgn(Wx,) \Wﬂ|1/(5+1)‘ " 0 almost surely.

This ends the proof of Theorem v). O

2.3.3 Case € [1,5]

Assume 3 € [1,5]. One needs to state two lemma.

Lemma 2.3.1. Fiz o € (0,2). Consider (LY);>0 the local time at 0 of (Wy)i>0 and its right-continuous
generalized inverse 7, = inf{u > 0, L% > t}. Forn >0, set K| := /Ot sgn(Ws) H/Vsll/o‘*2 Low, >n ds.
Then (K{)i>o converges a.s., as 1 — 0, to a symmetric a-stable process (Ki)i>0, such that

2% o2

2al(a)?sin(ra/2)

E [eigKTt} = ¢ "llll” | where ko =

See [YBS87].
Lemma 2.3.2. Let (LY);>0 be the local time at 0 of (Wy)i>o0. Consider (Ki)i>o the process defined in
the latter Lemma, with o = (8 + 1)/3. For each € > 0, let (A{)i>0 and (Hf)i>0 be the processes built

in Lemma|2.2.2, with the choice a. = ﬁ, if B € (1,5] and a. = €|loge| /2, if B =1 respectively.
s
Then,

i) For all T > 0, lim sup ‘A,f — Lg‘ = 0 almost surely.
e—0 [07T]

ii) If B € (1,5), for all T >0, lir% sup | V/eHs — (B + 1)1/6“_20}3/0‘1(,5‘ = 0 almost surely.
€E— [O,T]

iit) If B =1, for all T > 0, lig(l] [sup] ‘|elog €|3/2 Hf — Kt/\/§‘ = 0 almost surely.
Yo,

¢ %%
w) If 8=05, for all T > 0, lim sup ‘Tf — JELS‘ =0 a.s., where Tf := ;/ P —2 ) ds.
0071 a? |loge| Jo Qe

Proof. Fix T > 0.
i) STEP 1: Assume first 3 > 1.
W

€
time formula, denoting L7 the local time at = of (W:)¢>0, one can write, for all ¢ € [0, 7],

2 -2
€ ’7 /yl‘ x — €
Af = — / o (—) Ly dz = 'y/ o(y) 2Lty/'y dy.
R € R

€

2 ¢ -2
Set v = (8 + 1)cg, recall that a. = €/, so that Af = l/ o ( ) ds. By the occupation
€ JO

Moreover, by definition of cg,

¥ B v _ [ @) v (z)? e
/Ra2<y> dy‘/R[hf(h—lww dy‘/Rh%m)?d ‘/R py1 =t

Consequently,

supp 7y | L7 — L8|

ot - L?)dy' < [

dy — 0 a.s.,

A€ — LO —
sup ‘ t t ’ sup o'(y)2 e—0

(0,7] [0,7]

by the dominated convergence theorem:

12



e forall y € R, [sup] L;y/ T Lg = ¢ is uniformly continuous in ¢ on every
0,7

compact set (see [Corollary 2.8 p. 226 in [RY99)).

e for all y € R and € > 0, sup Lgy/7 L? <2 sup LY < +o0 a.s. by Lemma |A.0.5, and
[0,T] [0,T]xR

the fact that 1/0? is integrable.

STEP 2: Assume 3 = 1.
Integrating the equivalent of ¢ yields, for all x > 0,

/ dy N logx. (2.4)

L o%(y) w2

Fix § > 0. One can write, for ¢ € [0, 7],

e [t (W7 boelgw,|<s) toelgw s
Af = — s ds = s ds s ds
! /o“() ’ / 2(W,/a.) +/ 202(W,/a)
::I;’é ::J;’(s

Since there exists ¢ > 0 such that, for all z € R, 02(2) > ¢(1+|2]), if |W| > §, then o(Ws/ac) >
c¢(l1+0/ae) > c¢d/a. for e small enough. Thus,

T 1 T
< / elow, >} ds ‘ / € d Te
0 0

5 s = —> 0 almost surel
a20?(Ws/ae) Y
Using the occupation time formula one can write

aecod acCd e
) T ) ) x 0
L € e(Ly — LY)
199 — eitd — LO/ S | / ST ) g
' /5 2o (wfar) T | a2 (wja) T ) s a2o?wja)

I=Tes ::R?(S

JE(S

sup
(0,77

But, by (2.4) and the definition of a,

8/ac log(6
—§/a. G0 (y) e—0 2a¢ e—0

Using the decomposition of Af, one can write

A5 — 10] < |r€,5—1|Lg+‘R§’5 + el

Thus,

lim sup sup ‘A — L ‘ < hmsup |Tes — 1] LT + lim sup sup R + lim sup sup Jf’d‘ .
e—=0  [0,T7] e—=0  [0,T] e—=0  [0,T]

=0 -0

Moreover,

sup Ri’é‘ <res sup |Lf— LY.
[0, [0,T]x[—6,8]

So, by [Corollary 1.8 p.226 in [RY99],

lim sup sup |A§ — Lg‘ < sup |LP— Lg‘ — 0 almost surely.
=0 [0,7] [0,7]x[~6,3] 6—=0

13



ii) STEP 1: The process (K;);>0, defined in Lemma converges almost surely
uniformly on [0,T], as n — 0, to K; = /ngn(a:) |m|(1_2'8)/(ﬁ+1) (LY — LY1{jz<1}) d.

Assume § € (1,5). Set v = (8 + 1)cg. Since a = (8+1)/3, 1/a—2 = (1 -20)/(8+1). With
the notation of Lemma from the occupation time formula and symmetry it follows that,
for all t > 0,

K = /R sgn(a) 2|12/ 1 L dr = /R sgn(a) 2|12 10 (L L9 4 <1y) .

Fix ¥ € (0,1). One has

Myp:= sup (jz|A1)7Y |L§ — L?l{mq}’ < sup -V |L§ - Lﬂ + sup LY < +o0 as.,
[0,T1xR B [O,T}x[—l,l] [0,T]xR

by Lemma and the fact that x — L7 is ¥-Holder uniformly in ¢ on every compact set (see
[Corollary 1.8 p.226 in [RY99]).
Set K; = /ngn(m) |$|(1_2B)/('B+1) (Ly — L?1{|x\§1}) dz. One can write, for n <1,

sup K;] - fft = sup /sgn(m) |$|(172’8)/('B+ )1{| |<77}( Lt 1{|m|<1})dx

(0,7 (0,7

< Myr / [ PHO=20)/(5+D) g
-n

where ¥ € (0, 3) is chosen to be ¥ = 1 —§/2, for § = ﬁ 26 + 3 € (0,1) (because 3 € (1,5)).
One can conclude by the dominated convergence theorem. Moreover, by Lemma m, (K=o
converges pointwise to (K¢)i>0, hence K; = K, for all ¢t > 0.

STEP 2: Conclusion.

Observe that {/ea 2 = 72e(1=28)/(B+1) " Thus, by the occupation time formula and the fact that
¢ is odd, it follows that, for t € [0, T7,

_ t Wy _ T\ o
G/eHS = 42(0-29)/(5+1) /0 5 (’VG )ds _ 20-20)/(5+1) /R ¢(’7?) L da

— 2£(1-28)/(5+1) / ¢ (L) (L = L{1{jz<1y) da.
R €

Consequently, for any ¢ € (0, %),

— B+ 1)1/a72cé/aKt‘

[0,7]

_ € a— «
< /R 2172/ (I2) — (84 1)/e=2l/ sgn(a) [a] /<ﬁ+1>1sup»L — yeny] da

_ € a— e -
< Mo [ |et=200406 (B2 — (54 1)V} sgn(a) [af 24| (2] A1) da

In order to apply the dominated convergence theorem the following two facts need to be checked:

e With the equivalent for ¢, for all x € R,

72e(1=20)/(B+1) (ﬁ) , (B +1)2 1/ sen(z) ’x‘(l—%)/(ﬁ-rl) . by definition of .
€/ e

e Using that for all z € R, |¢(z)| < C |2|172)/B+D one has, for € > 0,
A PTA=28)/B+D) i 14 < 1

2123/ (1)) Clz| if |z| <
e o ()| (el A1) < {C||1 26)/(5+1)

which is an integrable function for 8 € (2,5). Here ¥ € (0, %) is chosen as in the previous
step.

if |z > 1,

14



For 8 € (1,2], one has to proceed quite differently. Indeed, the last function is integrable on

{le] <1}, s0
— X oa— « — xT
sup / (7%(1 25)/(ﬁ+1>¢<L) — (B+ )Y %l sgn(a) 2|0 2/3)/(5“)) (LF — 19)dz| — 0.
017 |/ ]zl <1 € 0
It remains to show that
— € oa— (67 — xT
sup / (12622040 (2 (54 1)/0=2elf sgu(a) o] 2O L7 da| — 0.
[0,7] |/|z[>1 € e—0

Fix ¢t € [0,T], by the occupation-time formula, one can write

/ (726(1—%)/(/34-1)@5 (ﬁ) —(B+ 1)1/0—201/a sgn(z) |x\(1_2'8)/(6+1)> L¥ dx
lz|>1 € A

‘ B W, 1/ .
_/0 (726(1 26)/(5+1) (’76) (B 1)l () [0 25)/(5+1)> Loy ds.

Hence,

sup
(0,77

/ (726(1—26)/(B+1)¢ (E) — (B + D)Y2 % gon () |x,<1—2ﬂ)/(ﬁ+1>> L7 dz
|z|>1 € s

T
< / <72€(1—2ﬁ)/(6+1)¢ (’YW> (B4 Y2 sgn(W,) ,Wsu—w)/(ml)) 1oy ds.
0 €
Now the dominated convergence theorem is applied:

e As before, for all s € [0,T7,

22(0-20)/(B+1) <W> (B + 1YY sgn (W) W, 1729/ B+D)

€ e—0

e For all e > 0 and s € [0,7],

_ W ~ - S
BB (D) 4y < OIS Ly < C € L(0.7)),

€
. 1-28
since Bl < 0.
This concludes the proof.

iii) Assume § = 1 and set a. = €|loge| /2. With the notations of Lemma [2.3.1} it follows, by the
occupation time formula, that, for ¢t > 0,

K = / sgn(z) |z /2 1oz Lt dz.
R
o=t —1/2 5. _ —-1/2 1z
Setting K; := ; sgn(Ws) |W| ds = A sgn(z) |z| L7 dz, one gets

- 1
’Kt - Kf’ < /R || /2 Lilfjp)<py dz < sgpo/ —dx — 0.
-

\/5 n—0
. t
Using Lemma [2.3.1} one obtains that K; = K; = / sgn(Ws) |I/VS|71/2 ds.
0
t 2W,
Besides, |elog e|3/2 Hf =4|elog €|_1/2/ 10) ® ) ds. This yields
0 €|log €|

T
sup |eloge|3/2Ht€—Kt/\/§‘ g/
0

4|elog e|_1/2 o) (
(0,7]

ds — 0,
e—0

V2

oW, \  sgn(Wy) Wi /2
€ |log €]

by the dominated convergence theorem:
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, using the equivalent of

9 -1/2
Ws ) N Sgn(WS) ‘WS|
e—0

e for all s € [0,T7, 4|eloge\1/2¢<
V2

e|log €|
e Since for all z € R, |¢(2)| < C|z|7/2, then, for all s € [0,7T] and € > 0,

2W ~ _
}4 leloge| ™% ¢ <e|loge|>' < C|wi|7% e L'((0,T)),

by Remark

iv) Assume (8 = 5, the proof is very similar to the first point with 8 = 1. Set v = 6¢5. Taking into
account the information known about v, it follows from the integration of the equivalent, that,

for all z > 0,
2logx

’ P(z)dz ~ (2.5)

z—oo 81

Besides, one can write

t 2 W t 2 197 t 2
€ i TWs Y YWs / ol fyM/'S
! /oe!loge\w< € > i /Oeloge]¢< c ) {IWs|<s} 48+ ; 6‘10g6‘¢< ; {|w|>5} ds

::itsﬁ :=J~f’5
Since there exists ¢ > 0 such that, for all z € R, ¢(z) < ﬁ, if [Ws| > 9, then ¢ (yWs/e) < C—;
z v
Thus,
_ T 21 W, T~é
sup Jf’(s < / T AW | >0} (7 S) ds| < 7€ 5 0 almost surely.
[0,7] 0 €|log €| € [loge|d e—0

One can then use the occupation time formula to write
B 1) 2 19 2 ) [z — 1.9
1576:/ gl ¢<W>L§d$:Lg/ g ¢(W)d$+/ MME)M
5 €|loge| € s € |log €| € _s €l|loge| €

::'Fe,é ::szé

But, by (2.5)),

. v8/€ 2vlog(~6 /e
w:/ 17 Wy ~ 2 g(vd/€) o2,
—~s/e [loge] e—0  8llloge| =0

By the decomposition of T, one can write

s = 3L9| < Jfes — o3| 19+ || + |77
Thus,
lim sup sup }Tf — ang‘ < limsup ’fgjg — J?‘ L% + lim sup sup R;’é + lim sup sup jf’é .
e—=0 (0,77 e—0 e—=0  [0,T7] e—=0 (0,77
=0 -0

Moreover,

sup R;’a <Tes  sSup ’Lf — L?‘ .

[OvT] [O7T] X [_516]
So

lim sup sup [Ty — J?JL?‘ < sup |LP— L?‘ — 0 a.s., by [Corollary 1.8 p.226 in [RY99).
=0 [07] [0.T]x[=6.6] o0
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Proof of Theorem ii) —iv). Assume B € [1,5]. Denote by (L?);>o the local time of (Wj);>o
and set 7, = inf{u > 0,LY > t} its generalized inverse. Keep the notations of Lemma with

a=(f+1)/3 and Lemma with

i)

iii)

i)

o= { 00 52003
< | elloge] if B=1.

Assume = 5, as seen in Remark it suffices to show that, for each t > 0,

€ t/e ) . )
|loge|/0 g'(Vs)*ds = |10g6| / S/6 2ds — ost, as e — 0.

1 t
Thanks to Lemma|2.2.2] it is equivalent to show that, for each t > 0, J; := ﬁ /0 g'(VE)2ds 2,
og €

agt. For all t > 0,

Ly (W (Wi /ac))? T eg (W (Wa/ae))? (W
Jf:/g( (Wre /ac)) ds:/ cg'(h”_(Wu/ac)) du = ‘ / P —2 ) du=T%.
0 [log €| o a?llogelo(We/ac)? a? [log e[ Jo Qe '

One knows, by Lemma [2.3.2} that, for all T > 0, sup |A; — L?‘ S 0 almost surely. Since (7¢):>0
[0.7] - _
has no fixed times of jumps (see [Theorem 8 p. 114 in [Ber98]), it follows from Lemma [A.0.4]

that, for all ¢ > 0, 7 —0> 7¢ almost surely. Moreover, for all ¢t > 0,
€E—r

270 2|70 0
Ji — ot < |T% — oL ‘LTtE — L0 —1.
Hence, using again Lemma [2.3.2| and the fact that T':= sup 7 is almost surley finite, the first
e€(0,1)
term tends to 0. For the second term, one can use the fact that 7/ — 7 a.s. and the almost

e—0
sure continuity of the local time. The last term is equal to 0 almost surely.

Assume B € (1,5). By Lemma one can assume again that Xo = V = 0 so that, by
Lemma [2.2.2, (Xy/¢)i>0 £ (Hre)t>0. Thanks to Lemma [2.3.1 St("‘) = Uﬁ_l(ﬂ + 1)1/‘1_262/07(”
is a symmetric a-stable process with E[exp(iuSéa))] = exp(—t|u|*). Hence, as already seen,
it suffices to prove that, for each t > 0, () = ‘{"/EH% —(B+ 1)1/a—2cé/°‘KTt = 0 al-
most surely. Fix ¢ > 0. As previously, 77 T as. and by Lemma @ for all T > 0,

lim sup | {/eHf — (8 + 1)1/0‘*202/0‘Kt = 0 almost surely. Hence,
e—0 [0,7]
di(e) < — (B4 )Mo Ky | + (B+ DYo2e® | Koy — K.
The first term tends to 0 almost surely, since 7' := sup 74 is almost surely finite. The second

€€(0,1)
term tends to 0 by the continuity of (K¢):>0. One gets, as previously, the convergence.

Assume g = 1. Using the same argument as before, S, /3.~ = (v/201) 71K, is a symmetric stable
pocess of index 2 with E[exp(iuSt(Q/‘g))] = exp(—t |u]2/3). Thus, it suffices to prove that, for all

t>0, 0;(e) := ‘|eloge|3/2 HZ n/\/i‘ v 0 almost surely. But, for all ¢ > 0,
€—>
Bule) < |letog e/ Hg, — Koe /2| + Ky = Ko | V2.

By Lemma again and the continuity of (K;)¢>0, d;(¢) converges to 0 almost surely, as € — 0.

O
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2.4 Proof of Corollary

Assume 8 > 1 and consider (V;, X¢)i>0 the solution to (2.1)), associated to some Brownian motion
(Bt)¢>0, and starting from some initial condition (Vp, Xo). Define, for ¢ > 0, F; := o(Xo, Vo, Bs, s < ).

Theorem [2.1.1] yields (vﬁB)Xt/E)po Ld (Xt(ﬁ))t>0, where the speed o? v 0 and the limiting process
- — €—>

(X(B))t>0 are those appearing in Theorem [2.1.1} Fix ¢t > 0. One has to show that (vgﬂ)Xt/e, Vise) N

(X¢ (8) ,V). By [Theorem 4.29 p. 78 in [Kal02], the density of regular functions and the independence
of V, it is sufficient to show that, for all ¢ € CL(R) and ¢ € Cy(R),

Ac:= ‘E (609 X, (Vi) | — / vdpg| —

64)0

Fix ¢ € C}(R) and ¢ € Cy(R). Call pg(1)) = /Rwduﬁ.
STEP 1: For all h € (0,t), 8c := E [[E [$:(Va/e) | Fe—ny/e] — ma(¥)]] —3 0.

Fix h € (0,t). The usual notation Pup(v) = Ey[t)(V;)] and || - [|7v, for the total variation norm, is
used. Let V be a pg-distributed random variable independent of X such that P(V # Vie—hy/e) =
IL(Vit=n)/e) — psllrv. By Markov’s property,

0 = E [[Eviu e [00Vige)] = 5(0)|| = E [Pt (Vignyje) = ()]
<E | Pyt (Vie-nye) = Pyt (V)| +E || Pyt (V) = sw)]].

;:561 =62

Besides, 6} < 2|9[|P(V # Vie—nyse) = 2lYlloo |L(Vig=nyse) — msllTv v 0, since pg is the invariant
measure of (V;);>0. For the same reason, using the dominated convergence theorem, 62 = 0.
- €—>

STEP 2: Conclusion.
Fix h € (0,¢). One can write A, < AL, + A2, + A2, + A}, where

Al :=|E <75 v X, )e) (Vt/e)] —E {‘b(vémX(tfh)/e)w(V;/e)”
A2 = [ [6(0 Xy )0 (Vi) — B [0 X o nyye)] s
Al =B [6e X nyy0)] ms(w) - E [6(X )] maw)]

Al =[E [(X))] ms() — E [o(X)] ns(w)]

By Theorem [2.1.1 A?,h = 0 and by step 1 Az,h < || 000 = 0. Besides, set C := [[9)||oo(/|¢]l00 +

|| 00,k ), where the compact set K is chosen such that for e and h small enough, (véﬁ)Xt/E, vﬁB)X(t,h)/e) €

K?. Then, by the dominated convergence theorem,

hmsupA » < ClimsupE {

e—0 e—0

B Xy —vP) X4—py)e

] =ce[|x? - x| n1] — o

Likewise, A — 0.
h—)O

This ends the proof of Corollary[2.1.3 O

18



Chapter 3

Asymptotic behaviour of solution of a
time-inhomogeneous kinetic equation

3.1 Introduction and main result

One can focus now on time-inhomogeneous kinetic equation. Consider the stochastic kinetic model:

" sgn(Va) |Val”
Vt:VﬁBﬁp/ AL

0 (3.1)

t
Xt—X0+/ V:qu,
0

where «,3,p € R and (By)i>0 is a Brownian motion. In [OffI2], the asymptotic behaviour of the
velocity process is studied. The interest is now on the asymptotic behaviour of the position process.
Thanks to [Propositions 2.3.2 and 2.3.6 in[Off12], there exists a pathwise unique strong solution (V;):>0
defined up to the explosion time, which is almost surely finite, and it is a Markov process.

Theorem 3.1.1. Consider p <0, o > 0, and € R such that 25 — (v + 1) > 0. Let (Vi, X¢)e>0 be a
solution of (3.1)). Then, as € converges to 0,

)
(€2 X )1 SAS (Bisy3)i>1-
Here (t)i>0 is a Brownian motion.

Remark 3.1.1. If one tries to adapt the proof of Theorem i) naively, one is led to find a solution
to

g sgn(v) [v|* | dg 19%g N

%(S,’U) T + %(S,U) + 5%(5,12) = —.

But this PDE is ill-posed. Thus one has to proceed quite differently, this is due to the time-dependance

of the stochastic differential equation satisfied by the velocity process.

3.2 Study of a changed-of-time process

Following the idea used in [Off12], one can perform first a change of time in (3.1). Denoting by
¢e @ t — €' the exponential change of time, the exponential scaling transformation is then given by
s t
Pe(w):s €RT — WS—E/Q, for w € Q. Set V© := &.(V) and Xt(e) = /0 v ds, for t > 0.
e
The process V(©) satisfies the equation

(e) i1

Av® = aw, — V2 ds + pel 2 =73 sgn (V)

V| ds, (3.2)

where (W}):>0 is a Brownian motion.
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Remark 3.2.1. Observe the time-inhomogeneous part: leaving out the last term, it yields the equation

of the Ornstein-Ulhenbeck process:

dUs; = dW, — % ds.

The last term in (3.2)) seems to be negligible.

Lemma 3.2.1. If p <0, a > —1 and 28 — (o« + 1) > 0, then, for all t > 0,

lim V' £ A(0, 1).

0 t/e
“/t(e)
Moreover, almost surely, lim sup ——= =
t—o00 QID(t)
Proof. The convergence in distribution comes from the proof of [Theorem 2.4.6 (2.4.15) in [Off12],
(e)
Besides, by [2.4.15 in [Off12], lim supvti = 1. But (—Vt(e))t>0 satisfies the same equation as
t—o0 QID(t) n
(‘/t(e))tz(). So, one can adapt the proof of [Off12] in order to find that
_yv®© (e)
1zlimsupL:—liminf Vi .
t—o00 21n(t) t=oo \/21n(t)
V(e)
So that lim inf —=——= = —1. The conclusion follows. O

t=oo (/21n(t)

Lemma 3.2.2. If p <0, @ >0 and 25 — (a+ 1) > 0, then, as € tends to 0,

e .d
(VeX{Dizo £5 @W)izo.

Proof. If g € C?, by Itd’s formula,

(e)

dg<v<e>>—g<v<e>>dw+< (VL) o (V) Vo ds.

5 >ds—|—g(V(e))pe( > A3 sen(V,©) ‘Ve)

One would like the second term in the right-hand side to be equal to —Vs(e). Taking g : v — 2v yields

2dV® = 2dW, — V(9 ds + 2pe( 3" =) 3gn(V,(®) ‘v@ ds.

It follows that

Xt(e) —ov® _ 21/;(6) +2W; +/ 2pe( > A3 sgn (V1) ‘V °)

ds. (3.3)

By Lemma |3.2.1] lim v £ N(0,1). For € > 0, setting v, —> 0 for the rate, one can write

e—0 t/e —0
(e) (e) (e) t/e a+1 a
veXt/ = 2vucVy 2”6‘/;/5 +2v€Wt/e+Ue/ 2pe "2 5 5 (V) [V ds.
0
—0 a.s.
by Slutsky lemma
With v = /€ it becomes
() (e) (e) t/e atl o'
Vexy) = 2vevi —2yev +2ﬁwt/6+\@/ 2peF D5 (V) VO s, (3.4)
N—— 0

—0 a.s. £2Wt

The dominated convergence theorem can be applied to the last term:
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«

— 0.
e—0

a+1

e For s >0, ﬁl[()’t/dzpe( 5 —B)s Sgn(vs(e)) Vs(e)

e Forall e <1 and s >0,

’ﬁl[oyt/eﬂpe(%ﬂ_ﬁ ) sgn (V) ’Vs(e) ve|" e Lt

P

"/t(e)
since a > 0 and lim sup ——=
t—o0 2 ln(t)

One concludes as in the proof of Theorem i). O

=1 a.s. (see Lemma |3.2.1]).

The Figure [3.1] illustrates this convergence.

0.09 -
0.08 o
0.07-
0.06 o i |
0.05- i
0.04
0.03 -
0.02 -

0.01 o

Figure 3.1: Distribution of \/eX t(/ee) and overlay with a Gaussian random variable N/ (0,4t), with t =7
and € = 1074,

Moreover, one can give a speed for the convergence:

X(e)
Lemma 3.2.3. If p <0, a >0 and 26 — (a+ 1) > 0, then, limsup ————— = 1 almost surely.
t—oo  24/2tIn(In(t))
Proof. By the law of iterated logarithm for the Brownian motion,
Wi

lim sup ———=—= =1 almost surely.
t—00 2t In(In(t))

From (3.3)), it follows that a.s.

lim su L—limsn Lo(e)—limsu L%—limsu S
i 23 /20 m(In(D) s A/20(I{0) o /2 (D) | oo /2 In(In(0))
1 t a+l «
+ plimsu / e s gon(V(©) ’Vs(e) ds
Y /2t () Jo Eu(Vs?)
_ AS) 21n(?)
= limsup
t—+o0 +/2In(t) /2t In(In(t))
1 t a+l «
+ plimsu / e D3 sgn(V) [V | ds
PRI 2t () Jo en(Vs?)
1 t a+l «
=1+ plimsu / e s gon(V©) ‘Vg(e) ds.
p t—>+oop V/2tIn(In(t)) Jo g (V")
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a+1 B

vl

One can shows that limsup ———— sgn(Vs(e)) s

t—4oo +/2tIn(In(t /

since lim sup =1 a.s.,then, for all € > 0, there exists A > 1 such that
t—oo  +/21n(t) 21n(t)

follows that

ds = 0 almost surely. Indeed,

‘V;(E)

‘V;(e)

<l+e It

]. t a+1 @ a+1
limsup —————— [ (52 s 5gn(V ) [V 9| ds = limsu / =B sen (VL)) |vLe)
t—>+oop 2tln(1n(t))/o Ba(Ve) |V t—>+oop \/275111 In(t Bn(Ve™) Vs
Then, for all t > A,
I S / LD (V@) [y S' / (=905 || * g
2tIn(In(t)) |/a ’ ° \/2tln In(t
o ()]
21 b Vs o/2
< V2®) [ epps ] <ln<s>) L
V2tIn(In(t)) Ja 2In(s)" \In(t)
21n(t)" o
< (14 e)*—————=—— n(t ) (3 ~B)s ds, since v > 0
/2t In(In(t
1+ /2In(t > (5B _ (o -p)A
e 2 —e' 2 — 0,

- QTH — B +/2tIn(In(t)) [ } t—+o0

because “’Ll — < 0. This concludes the proof. O
In fact, it is possible to find a formula for V(¢):
Lemma 3.2.4. For allt >0,
t t o
y :Vo(e)et/2+/ o (t=5)/2 dWS—l—p/ e (=9/20(%5 -5 on (@) [V @] 45 (3.5)
0 0

Proof. Writing differently (3.2), one has

(e)
v 4 Vs

s

(] ds

= AW, + pe 5 P sgn(V(®)

This can be solved, using the method of variation of parameters. Indeed, V(¢) can be written as
Vt(e) = Cte_t/g, for t > 0. Here C is a process that must be determined. It satisfies

dCs = e5/2 AW, + pel T =B)3¢5/2 sgn (V) ‘Ve)

Hence, for all ¢t > 0,

«

Ve ds.

S

t t
Cy = Vo(e) —i—/o e*/2dw, +/0 pe(o%lfﬁ)ses/2 sgn(V.(®)

This ends the proof. O

Remark 3.2.2. Vt(e) can be written as V;(e) = f/t(e) + Uy, where V(€ is an Ornstein Ulhenbeck process

t & e e @ .. . .
and U; := /0 pe_(t_s)/Qe(%fﬁ)s sgn(Vs( )) VS( )" ds. This is useful for the simulation.
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3.3 Proof of Theorem [3.1.1]

In this section, p < 0, & > 0, and 8 € R are such that 25 — (a+ 1) > 0.
The goal is know to find the asymptotic behaviour of (X3)¢>o.

STEP 1: Write (X¢){>0 as a function of (Xt(e))t>0.

Firstly, for all ¢ > 0, B N

t e e
(e) _ (e) Vu Bp Xet 3 X,
Xp = /0 V¥ ds L ud 52~ X1t g ) 57208
3 t
= Xpe 3?2 — X + 5 / Xeuwe 32 du, (3.6)
Setting v. — 0 for the rate, this yields, for € > 0,
e—0
3 t/e
veXt(/ee) = Xet/evee_?”t/26 — v X1+ % Xeue_g’“/2 du

0

3
= Xerjevee 2 — v Xy + v/ X,jee™39/2¢ds

But the behaviour of the third term of the right-hand side is unknown. However, observe that (3.6))
t
may be written, setting G : ¢t — /0 Xoue 32 du, as

)+ gG(t) — x4 x,, G0)=0.

This ODE can be solved :

t t
G:t r—>6_3t/2/ (Xge) + X1> e3%/2ds = e_3t/2/ Xe3/2ds + gX1(1 — e 32y,
3
0 0
Hence, using the two equality of G’, one obtains that, for all ¢ > 0,

¢
Xet€_3t/2 _ Xt(e) . 26—315/2/ X§6)63s/2 ds + X1€_3t/2.
0
This yields

t/e
Xet/eef3t/26 — Xt(72 _ 26315/26/ X£6)63S/2 ds + X1673t/2e
0

t
_ Xt(;f) _ 3e3t/26/ x(©) g3u/2e du + X e 3t/%.
€ % 0 u/e

STEP 2: Study of the mlddle term.

Since for u > 0, Xz(f/e = / S/G ds, one gets

t t u t t
36—3t/2€/ X(e/) e3u/2e du = 326—3t/2€/ / V(/e) dse3u/26 du = 326—3t/2€/ V(e) / e3u/2e duds
o | ue s/e 2¢ 0 / s

26 S/€
3 —3t/25/ (€)2€ [ 3t/2¢ _ 3s/2
"¢ Vg (e i) ds

_ 1 V(e) o—3t/2¢ V (€) o3s/2¢ 3
€ s/e s/e

) 1 _31/9¢ (e) 3s/2e
_Xt/e 26 o /‘/;/e / ds.

It yields
t/e
Xet/€€—3t/26 _ e—St/25// ‘/5(6)638/2 ds + Xle—St/ZE' (37)
0
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Moreover, applying It6’s formula,

e e 3 [t t/e
VO = v 42 / V(©e3/2 4 4 / ¢39/2 4@
0 0

v | gs.

s

t/e t/e t/e .
:VO(e)JF/ V(©)35/2 d5+/ £35/2 dWS+/ 3512 oS5 s (V)
0 0 0
Hence,
t/e
X g% = 72Xy — V) 4 V) — o302 /0 35/2 qI,

t/e a
— e3t/26// 638/2 (43 =B)s Sgn(Vs(e)) ‘Vs(e) ds.
0

It follows, for all u > 1,

In(%) In(%) .
63/2Xu/e _ 63/2(X1—Vo(e))—i—u3/21/h(f()u)—e3/2/ 35/2 dWs—e3/2/ 635/2[)6(%1—/3)5 sgn(‘/;(e)) Vs(e) ads.
€ 0 0
(3.8)
STEP 3: Letting € — 0.
The first and the last terms converge to 0 a.s. by the dominated convergence theorem:
e For all s >0, 63/21[0711](,“/6)]638/2p6(aTH_/B)8 sgn(Vs(e)) ’V.S(G) ¢ :6 0 a.s.
e For all e >0 and s > 0,
s atl s e e o —3(In(u/e)—s) at+l s e e
/2110 1n(uye € 2 pel " TP sgn(V(9) “/s( ) ‘ =032 g /e 2 |p| "2 =P |y (©)
<1

vl

s

< 432 1| (25 —DB)s 1g+(8) € L', as seen before.

Then, one can write, for all u > 1,
1n(%)
63/2Xu/e — Y+ us/zvl(()u) 63/2/ 35/2 aw.,
0

where Y g 0 almost surely. Using Lemma @, it becomes
€E—

u

In(%) In(%)—s
63/2Xu/e :Yj—i-ﬁuVO(e) +/ [U:S/Qe 5 _63/2635/2] aw,
0

In(¢)

In(¥) s
bt [T el e ()
0

«

ds.

1748

s

The last term converges to 0 a.s. by the dominated convergence theorem:

e For all s > 0, u®/? 1, ln(u/e)}pe o —h)s S/zfsgn S(e) : —0> 0 a.s.
€—>
e Forall e >0 and s > 0,
atl gy _ln(%)fs e e « a+1 _ln(%)fs e «
u??pel*2” =P Lo m(u/ee 2 sgn(V{9) [V ’ = u?/?|p| €l s Lo m(u/ee 2 Ve

-~

<1

< w32 |p|eF 05 [V ] 10, (s) € L,

Vs(e)

as already seen.
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It follows that, for all u > 1,

u

ln(e)
0

ln(%)—s

_ 63/2635/2] aw.,

:263/2Mln(%)

t —S
where Zf converges to 0 almost surely and M := /0 (63t/2€_t7 — 638/2) dW;s. The process (M;)¢>o is

a continuous local martingale, vanishing at 0, with bracket (M, M); =

t_ 1 3
<63). Hence (M, M) = o0,

so by Dambis-Dubins-Schwarz theorem (|[Theorem 1.6 page 181 in [RY99]), there exists a Brownian
motion (B¢)¢>0 such that M; = ﬂ(et _1)3 One can then write

3

€ L €
63/2Xu/e =Zy,+ 63/25(u/671>3 =Z,+ ﬂ(u76>3 .
3 3

Then it suffices to apply Lemma as in the proof of Theorem 7).

This ends the proof of Theorem |[5.1.1).

O

This convergence can be illustrated, using the equality (3.7) and Remark by Figures and
depending on which way the simulation is done. See Appendix [B] for details.

Figure 3.2: Distribution of 63/2Xt/E ~

3/2 féog(t/e) 173(6)633/2 du and overlay with a
Gaussian random variable N(0,t3/3), for t = 7
and € = 1074,

Figure 3.3: Distribution of 63/2Xt/E ~

32 féog(t/e)(f@(e) + U,)e**/? du and overlay with
a Gaussian random variable N'(0,3/3), for t = 7
and € = 1074,
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Appendix A

Technical results

Lemma A.0.1. Let G : R = R be a positive function which could be zero only at isolated points.

+o0
Consider (Wi)¢>o a real Brownian motion. Then /0 G(Ws)ds = +oo almost surely.

Proof. Choose # € R and € > 0 such that G(Jz — 26, + 2¢[) C RT™. Then if W, € [x — €,z + €],
G(Ws) > inf G > 0. Define the stopping times 79 = inf{t > 0, W; €]z — ¢,z + €[}, 09 = inf{t >

[z—e,x+€]
70, Wi ¢z —e€,x+€[} and for i > 0, 7,41 := inf{t > 0;, W5 €]z —€,x+€[} and 0441 = inf{t > 7,41, W, ¢

|z — €,z + ¢[}. Then
+0o0

G(W.)ds >3 / " am) ds.

0

o
But, thanks to strong Markov property, Y; := / G(Ws)ds are i.i.d. random variables with positive

T

expectation. Hence, by the law of large numbers, ZZ/ i G (W) ds = +oo almost surely. O

Lemma A.0.2. Let S be a separable metric space. Let (Y, Z,) € S X S be a sequence of processes on
S such that Y, =Y (for the convergence in law in S) and p(Yy, Zy) 50 where p is a metric on S.
Then Z, =Y.

Proof. See |Theorem 3.1 p. 27 in [Bil99]. O

Lemma A.0.3. If Y, LY inC = C([0,400[), and the sequence of functions (ge)eso converges
uniformly to some continuous function g. Then ge(Ye) £ g(Y).

Proof. Let h be a bounded and uniformly continuous function, one has to show that E[h o g.(Y¢)] -
e—
E[h o g(Y)]. One can write

Elh o ge(Ye)] = E[h 0 ge(Ye) — ho g(Ye)] + E[h 0 g(Y)].

The second term converges to E[h o g(Y')] since (Y¢)e>o converges in distribution towards Y and ho g
is continuous and bounded. It remains to show that E[h o g.(Y:) — h o g(Y¢)] e 0. h is uniformly
e—

continuous and (ge)eso converges uniformly to g so (h o g¢)eso converges uniformly to h o g. Then
[Elhoge(Ye) =hog(Yo)ll <[ hoge—hoglloc—0.
O
Proposition A.0.1. Let M C M;(C([0,T7])) be tight. Then %in(l) sup p({x|ws(x) > n}) = 0, where
—0 ueM
ws(f) == sup{|f(t) — f(s); 5,t € [0,T], |t — s| <6}, for every f € C([0,T7)..
Proof. See [Theorem 7.3 p. 82 in [Bil99). O

Lemma A.0.4. Let, forn > 1, (a}')i>0 be a continuous increasing bijective function from R to itself,
as well as its inverse (1)t>0-
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1. Assume that (a}')i>0 converges pointwise to some function (a;)i>o such that . liin a; = +oo, call
= = — 400

re = inf{u > 0,a, > t}, its right-continuous generalized inverse, and set J = {s > 0,r,— < r¢}.
Then, for allt € RT\J, lim 7}’ =ry.
t—+o00

2. If (a})i>0 converges (locally) uniformly to some strictly increasing function (at)i>o such that

tligl ar = +00, then (17)i>0 converges (locally) uniformly to (r¢)i>0, the inverse of (at)t>0.
—T00 - - -

Lemma A.0.5. Consider a Brownian motion (Wy)i>o and denote by (LY )i>o its local time at x € R.

Then for all T >0, sup LY is almost surely finite.
[0,T1xR

Proof. Fix T'> 0 and t € [0,7] and = € R. Firstly, one has Ly < L%.. Moreover, by Tanaka formula,

T T
v = Wy — 2|~ |al —/ sen(W, — 2) dW, < [Wr| + [e| - |a +/ A,
0 0

Thus, sup Lj <sup L} < 2|Wr| < 400 almost surely. O
(0,T]xR R
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Appendix B

Scilab code

Here is the main code used to do the simulation.

function [MB]=Brownian_motion(t,N)
h=t/N
acc = grand(1,N,"nor",0,sqrt(h))
MB=zeros(1,N+1)
for k=2:N+1

MB(k) = MB(k-1)+acc(k-1)

end

endfunction

Listing B.1: To simulate a standard Brownian motion

function [J=distribution_Xe(M,epsilon,t,N,rho,alpha,bet)
// M is the number of simulations
h=t/N
a=(alpha+1)/2-bet
Y=[1]
for i=1:M
MB=Brownian_motion(t,N)
G=grand(1,N+1,"nor",0,1)
x=[0:h:t]
y=zeros (G)
for k=1:N
y(k+1)=(2xrho* (abs (G(k+1)))~(alpha) ) *sign(G(k+1))
*xexp ((axk*h)/(epsilon))
end
j=inttrap(x,y)
Yt=-2*sqrt (epsilon)*G(N+1)+2*MB(N+1)+j/sqrt (epsilon)
Y=[Y,Yt]
end
histplot(100,Y)
z=-16:0.1:16
s=4x%t
plot2d(z,exp(-z.~2/(2%s))/sqrt (2x%pi*s),2)
endfunction

Listing B.2: To print the distribution of 1/eX t(/ee)

Remark B.0.1. It uses (3.4]), where Vt(/ee) is approximated by a normal distribution.

function [J=distribution_X_with_0U(M,epsilon,t,N,rho,alpha,bet)
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// M is the number of simulations
h=log(t/epsilon)/N
a=(alpha+1)/2-bet
speed=(epsilon)~(1.5)
Y=[1]
for i=1:M
x=[0:h:1log(t/epsilon)]
y=zeros(x)
for k=1:N
QU=grand(1,1,"nor",0,sqrt (1-exp(-k*h)))
y (k+1)=0Uxexp (3xk*h/2)
end
j=inttrap(x,y)
Yt=speedx*j
Y=[Y,Yt]
end
z=-34:0.1:34
histplot(100,Y)
s=t~3/3
plot2d(z,exp(-z.~2/(2%s))/sqrt (2xY%pi*s),17)
endfunction

Listing B.3: To print the distribution of 53/2Xt/6 ~ e3/2 folog(t/e) ‘;;(6)638/26116.

function [J=distribution_X(M,epsilon,t,N,rho,alpha,bet)
// M is the number of simulations
h=log(t/epsilon)/N
a=(alpha+1)/2-bet
speed=(epsilon)~(1.5)

Y=[1]
for 1=1:M
// Computation of \tilde(V):
S1=[]
for k=1:N
for j=1:N
S1=[S1, j*k*h/N]
end
end
S=unique(S1)
Vtilde=[]

for i=1:length(S)
v=grand(1,1,"nor",0,sqrt(1-exp(-S(i))))
Vtilde=[Vtilde,v]
end
x=[0:h:1log(t/epsilon)]
y=zeros(x)
for k=1:N
s=k*h
//computation of U(s)
h2=s/N
x2=[0:h2:s]
u=zeros (x2)
for j=1:N
i=find (8==j*k*h/N)
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v2=Vtilde (i)
u(j+1)=exp((at+0.5)*j*h2)*sign(v2)*abs(v2)~(alpha)
end
Us=exp(-s/2)*inttrap(x2,u)
i=find (S==N*k*h/N)
y(k+1)=(Vtilde (i) +Us) *exp(3*s/2)
end
I=inttrap(x,y)
Yt=speedx*I
Y=[Y,Yt]
end
=-34:0.1:34
sig=t~3/3
histplot(100,Y)
plot2d(z,exp(-z."~2/(2xsig) ) /sqrt (2*pi*sig) ,17);
endfunction

g : i 3/2 32 (189 = () 3s/2
Listing B.4: To print the distribution of €3/ Xije € / /0 (V¥ + U,)e3s/2du.
Remark B.0.2. The process (Ut)e>0 defined in Remark has been approximated by

~ t a ~ ~ «
Ut = /0 pe_(t_s)/Qe(#_ﬂ)s Sgn(V;(e)) “/;(e) ds.
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