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Abstract

This document is the report of an internship done during the second year in the Ecole Normale Supérieure
de Rennes. It was done at the University of Mannheim, during 6 weeks, supervised by Andreas Neueunkirch.
We study the interplay between probability, in particular Brownian motion, and partial differential equation.
We see methods for solving PDEs by simulating random paths of a Brownian motion, more precisely to solve
the Dirichlet Problem, the Heat Equation and other parabolic equations. We also give simulation examples
for the corresponding Monte-Carlo methods.
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Chapter 1

Introduction

Brownian motion is the name given to the irregular movement of pollen suspended in water, observed by the
botanist Robert Brown in 1828. At the beginning of the 20th century, Louis Bachelier and Albert Einstein
used the Brownian motion for modeling stocks of prices and diffusion processes. But the Brownian motion
was mathematicaly rigurous defined only in 1923 by Norbert Wiener. Brownian motion can be seen as the
distribution limit of a normalized sequence of random walks.
Besides we find partial differential equation in many fields. They can describe many phenomena such that
heat, stocks of prices and quantum mecanics. Sometimes we can solve it easily but often it is hard to find
an exact solution.
However Brownian motion can help us to find solution to such equation. Therefore, we can find an approxi-
mation by the Monte-Carlo methods.
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Chapter 2

Brownian Motion

In this chapter, let d be a positive integer and (Ω,F ,P) be a probability space.

2.1 Continuous-time process

Let I be an interval. A process (Xt, t ∈ I) defined on a measurable space (E, E) is a collection of random
variables, which take values in (E, E). It can be seen as a map from Ω to EI ,

X : Ω → EI

ω 7→ (Xt (ω))t∈I .

As for discrete-time random variables, we have:

Proposition 2.1.1. Let (Xt, t ∈ I) and (Yt, t ∈ J) be two processes defined on (E, E).

• They have the same distribution if, I = J , and for all n ∈ N∗, A1, . . . , An ∈ E and t1, . . . , tn ∈ I,

P(Xt1 ∈ A1, . . . , Xtn ∈ An) = P(Yt1 ∈ A1, . . . , Ytn ∈ An).

• They are independant if, for all n ∈ N∗, A1, . . . , An, B1, . . . , Bn ∈ E, t1, . . . , tn ∈ I and s1, . . . , sn ∈ J ,

P(Xt1 ∈ A1, . . . , Xtn ∈ An, Ys1 ∈ B1, . . . , Ysn ∈ Bn) = P(Xt1 ∈ A1, . . . , Xtn ∈ An)P(Ys1 ∈ B1, . . . , Ysn ∈ Bn).

Note. As for discrete random variables, we have the equivalents with the expectations of bounded measurable
functions.

We must also define the notion of filtrations for continuous-time processes.

Definition 2.1.1. Let I = [0, T ] or R+. We call filtration a nondecreasing family (Ft)t∈I of sub-σ-fields of
F :

Fs ⊆ Ft ⊆ F , 0 ≤ s < t <∞.

In the following, we will write (Ft) for (Ft)t∈I .

We set F∞ = σ (∪t≥0Ft).
Given a stochastic process, the filtration generated by the process is FXt = σ(Xs; 0 ≤ s ≤ t). It is the
smallest σ-field with respect to which Xs is measurable for every s ∈ [0, t].

Definition 2.1.2. The stochastic process X is adapted to the filtration (Ft) if, for each t ≥ 0, Xt is an
Ft-measurable random variable.

Obviously, every process X is adapted to
(
FXt
)
.

Definition 2.1.3. The stochastic process X is called progressively measurable with respect to the filtration(
FXt
)
if, for all t ∈ I,

X : ([0, t]× Ω, B([0, t])⊗Ft) → (R, B(R))
(s, ω) 7→ (Xs(ω))

is measurable.

In this case,
∫ t

0 Xs ds is well defined on
{∫ t

0 |Xs|ds <∞
}
.
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2.2 First results

We introduce here the Brownian motion and some properties we will need later.

Definition 2.2.1. Let I = R+ or [0, T ]. A standard, one dimensional, Brownian motion on I is a collection
of random variables (Wt, t ∈ I) such that:

• W0 = 0.

• For all s ≤ t ∈ I, Wt −Ws is normally distributed with mean zero and variance t− s.

• For all s ≤ t ∈ I, Wt −Ws is independant of Fs.

• Almost surely, the map t ∈ I 7→Wt ∈ R is continuous.

Note that, based on the definition, Wt is a real random variable with law N (0, t). So its probability
density function is:

p(t; 0, x) =
1√
2πt

exp

(
−x

2

2t

)
, x ∈ R.

Figure 2.1: A one-dimensional Brownian sample path on [0, 1].

Definition 2.2.2. Let µ be a probability measure on
(
Rd, B(Rd)

)
. Let W = (Wt, t ≥ 0) be a continuous

adapted process with values in Rd, defined on (Ω,F ,P). This process is called a d-dimensional Brownian
motion with initial distribution µ, if:

• ∀A ∈ B(Rd) P(W0 ∈ A) = µ(A).

• For 0 ≤ s < t, the increment Wt−Ws is independant of Fs and is normally distributed with mean zero
and covariance matrix equal to (t− s)Id, where Id is the (d× d) identity matrix.

• Almost surely, the map t ∈ I 7→Wt ∈ R is continuous.

If µ assigns measure one to some singleton {x}, we say that W is a d-dimensional Brownian motion starting
at x. The probability density function of a Brownian motion starting at x is

p(t;x, y)
∆
=

1√
2πt

e
−

(x− y)2

2t .

Note. For W a Brownian motion and x ∈ Rd, x+W is a Brownian motion starting at x.
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Figure 2.2: A two-dimensional Brownian motion.

Note. (Wt, t ≥ 0) is a d-dimensional Brownian motion on Rd if and only if its coordinates (W
(i)
t , t ≥ 0),

i = 1, . . . , d are one-dimensional independant Brownian motions.

Proposition 2.2.1. The Brownian motion has the following properties

• ∀t ∈ I, E[Wt] = 0,

• ∀t ∈ I, E[W 2
t ] = t,

• ∀t, s ∈ I, E[WtWs] = t ∧ s.

Proof. The first two one are obvious since Wt ∼ N (0, t). Then let’s prove the last one.
Assume that t < s, we have E[WtWs] = E[(Ws −Wt)Wt] + E[W 2

t ] = t because of independance of Ws −Wt

from Ft.

Proposition 2.2.2. Let (Wt, t ≥ 0) be a Brownian motion on R. So are the processes obtained by the
following transformations:

• (Symmetry) −W = {−Wt, Ft; 0 ≤ t <∞}.

• (Translation) Y = {Yt, FYt ; 0 ≤ t <∞} defined for T > 0 by

Yt = Wt+T −WT , for 0 ≤ t <∞.

• (Time-reversal) Z = {Zt, FZt ; t ∈ [0, T ]} defined for T > 0 by

Zt = WT −WT−t, for 0 ≤ t ≤ T.

• (Scaling) X = {Xt, Fct; 0 ≤ t <∞} defined for c > 0 by

Xt =
Wct√
c
, for 0 ≤ t <∞.

Proof. See [1, Chapter 2 p.104]

We can visualize these properties on Figures 2.3 and 2.4: if we erase time and space graduations, the
both sample paths are alike. And we can not know which of the preceding transformations we have drawn.

Proposition 2.2.3. Let W be a one-dimensional Brownian motion and T > 0. Then, (Wt, t ∈ [0, T ]) and
(WT+t −WT , t ≥ 0) are two independant Brownian motions.
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Figure 2.3: Brownian sample path on [0, 1]. Figure 2.4: Brownian sample path on [0, 1/10].

Proof. We already know that the processes are Brownian motions. Let’s prove that they are independant.
Let n ∈ N∗, t1 < . . . < tn, s1 < . . . < sn and f, g : Rn → R be two bounded measurable functions. Define

A = E [f(Wt1 , . . . ,Wtn)g(WT+s1 −WT , . . . ,WT+sn −WT )] .

Let’s consider α: (x1, . . . , xn) 7→ (x1, x1 + x2, . . . , x1 + . . .+ xn).
We have

A = E
[
f ◦ α(Wt1 ,Wt2 −Wt1 , . . . ,Wtn −Wtn−1)g ◦ α(WT+s1 −WT ,WT+s2 −WT+s1 , . . . ,WT+sn −WT+sn−1)

]
.

Using the fact that increments are independants, it follows

A = E
[
f ◦ α(Wt1 ,Wt2 −Wt1 , . . . ,Wtn −Wtn−1)

]
E
[
g ◦ α(WT+s1 −WT ,WT+s2 −WT+s1 , . . . ,WT+sn −WT+sn−1)

]
= E [f(Wt1 , . . . ,Wtn)]E [g(WT+s1 −WT , . . . ,WT+sn −WT )] .

Theorem 2.2.1. For almost every ω ∈ Ω, we have:

1. lim
t↓0

Wt(ω)√
2t log log(1/t)

= 1,

2. lim
t↓0

Wt(ω)√
2t log log(1/t)

= −1,

3. lim
t→∞

Wt(ω)√
2t log log(t)

= 1,

4. lim
t→∞

Wt(ω)√
2t log log(t)

= −1.

Proof. By symmetry, property 2 follows from 1, and by time-inversion, properties 3 and 4 follow from 1 and
2, respectively. It suffices to show 1. See [1, Section 2.9 p.112].

We introduce the stopping time:

Tb = inf{t ≥ 0; Wt = b}, for b ∈ Rd.

We will now analyse the law of Mt
∆
= max

0≤s≤t
Ws, when d = 1.

Note that we have {Tb ≤ t} = {Mt ≥ b}, for t > 0 and b ∈ R.

Proposition 2.2.4. Mt et |Wt| are identically distributed.
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Proof. We consider the distribution function. We have, for x ∈ Rd,

P0(Mt ≥ x) = P0(Wt ≤ x,Mt ≥ x) + P0(Wt > x,Mt ≥ x)

= P0(Wt ≤ x,Mt ≥ x) + P0(Wt > x) , since Wt > x⇒Mt ≥ x.

Now we have to find P0(Wt ≤ x,Mt ≥ x).

P0(Wt ≤ x,Mt ≥ x) = P0(Wt ≤ x, Tx ≤ t)
= P0(Wt ≥ x), as we will see later by the reflection principle.

So it follows
P0(Mt ≥ x) = 2P0(Wt > x) = P0(|Wt| > x),

since −Wt is also a Brownian motion.

Thanks to this Proposition, we get

P0(Tb ≥ T ) = P0(MT ≥ b) = P0(|WT | ≥ b), ∀b ∈ R, T > 0.

2.3 Continuous-time Martingales

In this section we will extend the discrete-time notions to continuous-time martingales.
We consider a real-valued process X = (Xt, 0 ≤ t <∞) on a probability space (Ω,F ,P), adapted to a given
filtration (Ft) and such that E|Xt| <∞, for every t ≥ 0.

Definition 2.3.1. The process {Xt, Ft; 0 ≤ t < ∞} is said to be a submartingale (respectively, a super-
martingale) if, for every 0 ≤ s < t <∞, we have, a.s. E[Xt|Fs] ≥ Xs (respectively, E[Xt|Fs] ≤ Xs).
We shall say that {Xt, Ft; 0 ≤ t <∞} is a martingale if, it is both a submartingale and a supermartingale.

We can now see that the Brownian motion is a martingale in respect to the filtration it generates.
Let 0 ≤ s ≤ t. We know that Wt −Ws is independant of Fs, then

E [Wt|Fs] = E[Wt −Ws|Fs] +Ws = E[Wt −Ws] +Ws = Ws.

2.4 Markov property of the Brownian motion

As in the discrete-time case, a process (Xt, t ≥ 0) satisfies the Markov property if, for all T > 0, the law of
(XT+t, t ≥ 0) conditionally to (Xt, 0 ≤ t ≤ T ) is the same as the one of (XT+t, t ≥ 0) conditionally to XT .
Let 0 ≤ s < t. Let us suppose that we observe a Brownian motion with initial distribution µ up to time s. In
particular, we know the value ofWµ

s , we call it x. Then,Wµ
t = (Wµ

t −W
µ
s )+Wµ

s and we know thatWµ
t −W

µ
s

is independant of Fs (the observations up to time s) and is distributed as Wt−s is. So (Wµ
t −W

µ
s ) +Wµ

s is
distributed as W x

t−s is. So, we get

Proposition 2.4.1. Brownian motion satisfies the Markov property. In other words:

Pµ(Wt ∈ A|Fs) = Pµ(Wt−s ∈ A|Ws), 0 ≤ s < t, A ∈ B(Rd).

And
Pµ(Wt ∈ A|Ws = x) = Px(Wt−s ∈ A), 0 ≤ s < t, A ∈ B(Rd), x ∈ Rd.

Proposition 2.4.2 (The Strong Markov Property). Let T be a stopping time and W a Brownian motion.
Then,

E0[f(WT+s)|FT ] = E0[f(WT+s)|WT ].

In particular, on {T <∞}, (Wt+T −WT ) is a Brownian motion independant of FT .

Proof. See [1, Section 2.6].
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2.5 Reflection principle

Let {Wt, Ft; 0 ≤ t <∞} be a one-dimensional Brownian motion on (Ω,F ,P).
For b > 0 and t > 0, we have

P0(Tb < t) = P0(Tb < t,Wt > b) + P0(Tb < t,Wt < b)

= P0(Wt > b) + P0(Tb < t,Wt < b).

Let’s have a look on the second term. If Tb < t and Wt < b, then sometime before time t, the Brownian path
reached level b and then traveled from b to another point c < b. For every path which crosses the level b and
is at time t at a point below b, call it c, there is a "shadow path" which is the reflect about the level b. It
exceeds this level at time t. See Figure 2.5. These two paths have the same probability, as a consequence of
the strong Markov property. So, heuristically,

P0(Tb < t,Wt < b) = P0(Tb < t,Wt > b) = P0(Wt > b).

Thus,

P0(Tb < t) = 2P0(Wt > b) =

√
2

π

∫ +∞

b/
√
t
e−x

2/2dx.

By differentiating with respect to t, we get the density of the passage time Tb:

P0(Tb ∈ dt) =
|b|√
2πt3

e−b
2/2t, t > 0.

0
Tb
•

b•

c

2b− c

•

Figure 2.5: The reflection principle.
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Chapter 3

Interplay with Partial Differential Equations

The solutions to many problems of elliptic and parabolic partial differential equations can be represented as
expectations of stochastic functionals. It gives us a way to solve PDEs and get properties of these solutions
and, conversely to determine the distributions of various functionals of stochastic processes by solving related
partial differential equation problems. We see three main partial differential equations: the Dirichlet Problem,
the Heat Equation and more general parabolic equations.

3.1 The Dirichlet Problem

In this section, {Wt, Ft; 0 ≤ t < ∞}, (Ω,F), {Px}x∈Rd is a d-dimensional Brownian family and D is an
open set in Rd.
We introduce the time of first exit from D

τD
∆
= inf{t ≥ 0; Wt ∈ Dc}.

As each component of W is almost surely unbounded (Theorem 2.2.1), we have

Px(τD <∞) = 1, ∀x ∈ D ⊂ Rd, D bounded.

Let Br be the open ball of radius r centered at the origin. Then its volume is:

Vr
∆
=

2rdπd/2

dΓ(d/2)
,

and its surface area is

Sr
∆
=

2rd−1πd/2

Γ(d/2)
=
d

r
Vr.

We define a probability measure µr on ∂Br by

µr(dx) = P0(WτBr ∈ dx), r > 0.

3.1.1 Harmonic function and mean-value property

Let’s recall some properties.

Definition 3.1.1. The function u : D → R has the mean-value property if, for every a ∈ D and 0 < r <∞
such that a+Br ⊂ D, we have

u(a) =

∫
∂Br

u(a+ x)µr(dx).

Then,
1

Vr

∫
Br

u(a+ x)dx =
1

Vr

∫ r

0
Sρ

∫
∂Bρ

u(a+ x)µρ(dx)dρ

=
1

Vr

∫ r

0
Sρu(a)dρ, by definition

= u(a)
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So,

u(a) =
1

Vr

∫
Br

u(a+ x)dx.

Proposition 3.1.1. If u is harmonic in D, then it has the mean-value property.
If u maps D into R and has the mean-value property, then u is of class C∞ and harmonic.

Proof. See [1, Section 4.2. p.241] for a proof using stochastic calculus.

3.1.2 The Dirichlet Problem

Let f : ∂D → R be a given continuous function. The Dirichlet problem (D, f) is finding a continuous
function u : D → R such that u is harmonic in D and is equal to f on ∂D.
In other words, the last condition is that, u is of class C2(D) and{

∆u = 0 in D
u = f on ∂D. (3.1)

We call such a function, a solution to the Dirichlet problem (D, f). We can see that, using Brownian
motion, we can write down a solution to (D, f):

u(x)
∆
= Exf(WτD), x ∈ D, (3.2)

provided the expectation exists.
Let’s verify it:

• Boundary values: If a ∈ ∂D, u(a) = Eaf(WτD) = Eaf(a) = f(a), by the definition of τD.

• if a ∈ D, choose r so that a+Br ⊂ D,

u(a) = Eaf(WτD) = Ea
[
Ea
[
f(WτD)|Fτa+Br

]]
= Eau

(
Wτa+Br

)
, by strong Markov property

=

∫
∂Br

u(a+ x)µr(dx).

Thus u has the mean-value property, and therefore is harmonic.

So u satisfies 3.1. The only problem is whether u is continuous up to and including ∂D.

Proposition 3.1.2. If f is bounded and Px(τD <∞) = 1, for all x ∈ D, then there exists an unique bounded
solution to (D, f) and it is 3.2.

Proof. Let u be a bounded solution to (D, f) and Dn = {x ∈ D; inf
y∈∂D

‖ x− y ‖> 1/n}. With Itô’s rule, see

B.0.1, and 3.1 we have a.s.:

u(Wt∧τBn∧τDn ) = u(W0) +

d∑
i=1

∫ t∧τBn∧τDn

0

∂u

∂xi
(Ws)dW

(i)
s .

We take the expectations and by the property of stochastic integral, we get, for 0 ≤ t < ∞, n ≥ 1 and
a ∈ Dn,

u(a) = Ea[u(W0)] = Ea[u(Wt∧τBn∧τDn )].

When t → ∞ and n → ∞, u(Wt∧τBn∧τDn ) converges to u(WτD) = f(WτD) a.s. And therefore, with the
bounded convergence theorem,

u(a) = Ea[f(WτD)].
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3.1.3 Regularity of the solution

We could have found a solution to the Dirichlet problem but it remains the problem of the continuity of u
at the boundary of D. We want to characterize the points a ∈ ∂D where

lim
x→a
x∈D

Exf(WτD) = f(a), (3.3)

for every bounded, measurable function f : ∂D → R which is continuous at a.
Let’s introduce the stopping time

σD
∆
= inf{t > 0; Wt ∈ Dc}.

Definition 3.1.2. A point a ∈ ∂D is regular for D if, Pa(σD = 0) = 1, i.e. a Brownian path started at a
does not return to D and remains in Dc for a nonempty time interval.

Note. Regularity is local: a ∈ ∂D is regular for D if and only if a is regular for (a+Br)∩D, for some r > 0.

Note. a is irregular if Pa(σD = 0) < 1. By Blumenthal zero-one law, Pa(σD = 0) = 0.

Theorem 3.1.1. For d ≥ 2 and a ∈ ∂D, the following are equivalent:

1. lim
x→a
x∈D

Exf(WτD) = f(a) for every bounded, measurable function f : ∂D → R which is continuous at a.

2. a is regular for D.

3. ∀ε > 0, lim
x→a
x∈D

Px(τD > ε) = 0.

Proof. Without loss of generality, we can assume that a = 0.
1⇒ 2: Let’s suppose that 0 is irregular, then thanks to the previous Note, Pa(σD = 0) = 0. Since a Brownian
motion never returns to its starting point (See [1, Section 3.3 p.161] for more details), when d ≥ 2,

lim
r→0

P0(WσD ∈ Br) = P0(WσD = 0) = 0.

Let r be such that P0(WσD ∈ Br) < 1/4. We choose δn such that 0 < δn < r and δn ↓ 0 for all n. Let’s
define τn = inf{t ≥ 0; ‖ Wt ‖≥ n}, for n ∈ N. We have P0(τn ↓ 0) = 1 and so lim

n→∞
P0(τn < σD) = 1. Let n

be large enough so that P0(τn < σD) ≥ 1/2, we have

1

4
≥ P0(WσD ∈ Br)

≥ P0(WσD ∈ Br, τn < σD)

≥
∫
R
P0(WσD ∈ Br, τn < σD,Wτn ∈ dx)

≥
∫
R
P0(WσD ∈ Br|τn < σD,Wτn ∈ dx)P0(τn < σD,Wτn ∈ dx)

≥
∫
D∩Bδn

Px(WσD ∈ Br)P
0(τn < σD,Wτn ∈ dx)

≥
∫
D∩Bδn

Px(WτD ∈ Br)P
0(τn < σD,Wτn ∈ dx)

≥ inf
x∈D∩Bδn

Px(WτD ∈ Br)
∫
D∩Bδn

P0(τn < σD,Wτn ∈ dx)

≥ inf
x∈D∩Bδn

Px(WτD ∈ Br)P
0(τn < σD)

≥ 1

2
inf

x∈D∩Bδn
Px(WτD ∈ Br)

So, inf
x∈D∩Bδn

Px(WτD ∈ Br) ≤ 1/2. Thus, there exist xn ∈ D ∩ Bδn such that Pxn(WτD ∈ Br) ≤ 1/2. Now,

we choose a bounded continuous function f : ∂D → R, such that,

12



• f(0) = 1,

• f ≤ 1 inside Br,

• f = 0 outside Br.

With such a function, we obtain,

lim
n→∞

Pxn(WτD ∈ Br) ≤ 1/2 < 1 = f(0).

But,

lim
n→∞

Exnf(WτD) = lim
n→∞

∫
D
f(x)Pxn(WτD ∈ dx)

= lim
n→∞

∫
Br

f(x)Pxn(WτD ∈ dx)

≤ lim
n→∞

∫
Br

Pxn(WτD ∈ dx)

≤ lim
n→∞

Pxn(WτD ∈ Br).

So 1 fails.
2⇒ 3: See [1, Section 4.2 p.247].
3⇒ 1: See [1, Section 4.2 p.247].

Definition 3.1.3. Let a ∈ ∂D. A barrier at a is a continuous function v : D → R which is harmonic in D,
positive on D\{a}, and equal to zero at a.

Proposition 3.1.3. Let D be bounded and a ∈ ∂D. If there exists a barrier at a, then a is regular.

Proof. Let’s suppose that v is a barrier at a, let f : ∂D → R be a bounded, continuous at a, function. We
define M = sup

x∈∂D
|f(x)|. We want to show 1 of Theorem 3.2. Let ε > 0, and δ such that

x ∈ ∂D, ‖ x− a ‖< δ ⇒ |f(x)− f(a)| < ε.

Then let k be such that kv(x) ≥ 2M for x ∈ D and ‖ x− a ‖≥ δ.
Then for x ∈ D, |f(x)− f(a)| < ε+ kv(x).
Thus for x ∈ D, |Exf(WτD)− f(a)| < ε+ kExv(WτD) = ε+ kv(x), because of Proposition 3.1.2.
But v is continuous and v(a) = 0 so lim

x→a
x∈D
|Exf(WτD)− f(a)| < ε. And so a is regular.

Example 3.1.1. Let D ⊂ Br ⊂ R2 be an open set, where 0 < r < 1 and assume that (0, 0) ∈ ∂D. If log is
well-defined on D\(0, 0), we let

v(x1, x2)
∆
=

 −Re 1

log(x1 + ix2)
= − log(

√
x2

1 + x2
2)

| log(x1 + ix2)|2
, (x1, x2) ∈ D\(0, 0),

0, (x1, x2) = (0, 0).

Indeed, v is the real part of an analytic function, so v is harmonic, and as 0 <
√
x2

1 + x2
2 < r < 1 in D\(0, 0),

v is positive on this set. So v is a barrier at (0, 0).

Proposition 3.1.4. Let D ⊂ R2 be open, and suppose that a ∈ ∂D has the property that there exist a point
b 6= a in R2\D, and a simple arc in R2\D connecting a to b. Then a is regular.

Note. We call a simple arc an arc which never crosses itself.

Proof. We can assume without loss of generality that a = (0, 0). We choose r such that 0 < r <‖ b ‖ ∧1.
We see before that it suffices to show that b is regular for D ∩Br. We know that C is a simple arc in R2\D
connecting a to b. On Br\C, log is well-defined because we can not turn around the origin. Then, the
Example 3.1.1 gives us a barrier at a and so by Proposition 3.1.3, a is regular.

13



Example 3.1.2 (Lebesgue’s Thorn). Let us see an example of an irregular point. With d = 3 and {εn}n≥1

a sequence of positive numbers decreasing to zero, we define

E
∆
= {(x1, x2, x3); −1 < x1 < 1, x2

2 + x2
3 < 1},

Fn
∆
= {(x1, x2, x3); 2−n ≤ x1 ≤ 2−n+1, x2

2 + x2
3 ≤ εn}

and D ∆
= E\(

⋃
n≥1

Fn).

We know that P0((W
(2)
t ,W

(3)
t ) = (0, 0), for some t > 0) = 0, so the P0-probability thatW = (W (1),W (2),W (3))

ever hits the compact set Kn
∆
= {(x1, x2, x3); 2−n ≤ x1 ≤ 2−n+1, x2 = x3 = 0} equals to zero. Moreover,

lim
t→∞

‖Wt ‖=∞ a.s., thus, if εn is enough small, we can assume that P0(Wt ∈ Fn, for some t ≥ 0) ≤ 3−n. If
W , starting at the origin, does not return to D immediatly, it must avoid D by entering

⋃
n≥1 Fn. That is

to say,

P0(σD = 0) ≤ P0(Wt ∈ Fn, for some t ≥ 0 and n ≥ 1) ≤
+∞∑
n=1

3−n < 1.

And thus, 0 is an irregular point.

0•

D

x1

x2

Figure 3.1: Lebesgue’s Thorn.

Definition 3.1.4. For y ∈ Rd\{0} and 0 ≤ θ ≤ π, we define the cone C(y, θ) with direction y and aperture
θ by

C(y, θ) = {x ∈ Rd; (x, y) ≥‖ x ‖ · ‖ y ‖ · cos θ}.

y

C(y, θ)

θ
θ

Figure 3.2: The cone C(y, θ) with direction y and aperture θ.
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Definition 3.1.5. The point a ∈ ∂D satisfies Zaremba’s cone condition if, there exist y 6= 0 and 0 < θ < π
such that the translated cone a+ C(y, θ) is contained in R2\D.

Theorem 3.1.2. If a point a ∈ ∂D satisfies Zaremba’s cone condition, then a is regular.

Proof. See [1, Section 4.2 p.250].

Thus we have a complete solution to the Dirichlet problem for many open sets D. If every bounded
points of D is regular and D satisfies Pa(τD < ∞) = 1 for all a ∈ D, then the unique bounded solution to
(D, f) is given by 3.2.

3.1.4 Integral formulas of Poisson

If D is a half-space or a d-dimensional sphere, we can compute the solution to get Poisson integral formulas.

Theorem 3.1.3. For d ≥ 2, D = {(x1, . . . , xd);xd > 0} and f : ∂D → R a bounded and continuous function,
the unique bounded solution to the Dirichlet problem (D, f) is given by

u(x) =
Γ(d/2)

πd/2

∫
∂D

xdf(y)

‖ y − x ‖d
dy, x ∈ D.

Proof. See [1, Section 4.2.D].

Theorem 3.1.4. For d ≥ 2, Br = {x ∈ Rd; ‖ x ‖< r}, and f : ∂Br → R continuous, the unique solution to
the Dirichlet problem (Br, f) is given by

u(x) = rd−2(r− ‖ x ‖2)

∫
∂Br

f(y)µr(dy)

‖ y − x ‖d
, x ∈ Br.

Proof. See [1, Section 4.2.D].

Example 3.1.3. Let u be the stationnary temperature on the unit-disk, then u verifies the Laplace equation
∆u = 0. Let assume we have the Dirichlet condition u(1, θ) = φ(θ) for all θ ∈ [0, 2π), on the unit circle.
Then, thanks to the integral formula of Poisson on the 2-dimensional sphere, u is given by

u(r, θ) =
1

2π

∫ π

−π
φ(t)

1− r2

1− r cos(t+ θ) + r2
dt, 0 ≤ r ≤ 1, θ ∈ [0, 2π).

3.2 The one-dimensional Heat Equation

This equation describes the temperatures in infinite, semi-infinite, and finite rods. We consider an infinite
rod, insulated and extended along the x-axis of the (t, x) plane, f(x) denotes the temperature of the rod at
t = 0 and location x. Let u(t, x) be the temperature of the rod at time t ≥ 0 and position x ∈ R. Then u
satisfies the heat equation  ∂u

∂t
=

1

2

∂2u

∂x2

u(0, x) = f(x), x ∈ R.
(3.4)

Note. We observe, it will be useful later, that the transition density of the one-dimensional Brownian motion

p(t;x, y) =
1

dy
Px(Wt ∈ dy) =

1√
2πt

e−(x−y)2/2t, t > 0, x, y ∈ R,

satisfies the partial differential equation
∂p

∂t
=

1

2

∂2p

∂x2
.

We call p(t;x, y) a fundamental solution to our problem.
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Theorem 3.2.1. Let f : R→ R be a Borel-measurable continuous function satisfying∫ +∞

−∞
e−ax

2 |f(x)|dx <∞,

for some a > 0. Then

u(t, x)
∆
= Exf(Wt) =

∫ +∞

−∞
f(y)p(t;x, y)dy (3.5)

is defined for 0 < t < 1/(2a), x ∈ R, has derivatives of all orders, and satisfies the heat equation 3.4.

Proof. u is well-defined thanks to the condition on the integral. Then, by derivating under the integral, u has
derivatives of all orders. Since p satisfies the heat equation 3.4, u satisfies the partial differential equation.
And by dominated convergence theorem,

lim
t→0

Exf(Wt) = lim
t→0

E0f(x+Wt) = f(x).

3.2.1 The Tychonoff uniqueness theorem

Definition 3.2.1. We say that a function u : Rm → R has continuous derivatives up to a certain order on
a set G, if these derivatives exist and are continuous in the interior of G, and have continuous extensions to
the boundary ∂G.

With this convention, we can now give the following theorem, about uniqueness.

Theorem 3.2.2. If u is C1,2 on the strip (0, T ] × R, satisfies the heat equation 3.4 there and if there exist
K and a such that

lim
t↓0
y→x

u(t, y) = 0, x ∈ R, (3.6)

sup
0<t≤T

|u(t, x)| ≤ Keax2
, x ∈ R2. (3.7)

Then u = 0 on (0, T ]× R.

Note. If u1 and u2 satisfy the heat equation 3.4, the condition 3.7 and

lim
t↓0
y→x

u1(t, y) = lim
t↓0
y→x

u2(t, y),

then we can apply Theorem 3.2.2 to u1 − u2 and get the uniqueness.

Proof. Recall that we note Ty the first passage time of W to y. Let x ∈ R, t ∈ [0, T ) and choose n > |x|.
We define Rn = Tn ∧ T−n and v(θ, x)

∆
= u(T − t− θ, x), for 0 ≤ θ < T − t. By Itô’s rule, and since u satisfies

the heat equation 3.4, we have, a.s., for 0 ≤ s < T − t,

v(s ∧Rn,Ws∧Rn) = v(0,W0) +

∫ s∧Rn

0
∂θv(s,Ws)ds+

∫ s∧Rn

0
∂xv(s,Ws)dWs +

1

2

∫ s∧Rn

0
∂2
xv(s,Ws)ds

= v(0,W0) +

∫ s∧Rn

0
∂xv(s,Ws)dWs.

Then we take the expectations, and because of properties of the stochastic integral, we obtain

u(T − t, x) = v(0, x) = Exv(s ∧Rn,Ws∧Rn)

= Ex[v(s,Ws)1s<Rn ] + Ex[v(Rn,WRn)1s≥Rn ].

But

• |v(s,Ws)1s<Rn | ≤ max
0≤s<T−t
|y|≤n

|u(T − t− s, y)| ≤ Keay2
a.s., because of 3.7,
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• lim
s→T−t

v(s,Ws) = 0 a.s. because of 3.6,

• |v(Rn,WRn)1s≥Rn | ≤ Kean
2 a.s., as before, since |WRn | = n a.s.,

• lim
s→T−t

v(Rn,WRn)1s≥Rn = v(Rn,WRn)1T−t>Rn a.s. .

So from the bounded convergence theorem, we get, for s→ T − t,

u(T − t, x) = Ex[v(Rn,WRn)1T−t>Rn ].

And,

|u(T − t, x)| ≤ Kean2
Px(Rn < T − t)

≤ Kean2
[Px(Tn < T − t, Tn < T−n) + Px(T−n < T − t, Tn ≥ T−n)]

≤ Kean2 [
P0(Tn−x < T − t, Tn−x < T−n−x) + P0(T−n−x < T − t, Tn−x ≥ T−n−x)

]
≤ Kean2 [

P0(Tn−x < T ) + P0(Tn+x < T )
]
by symetry of the Brownian motion,

≤ Kean2 [
P0(MT < n− x) + P0(MT < n+ x)

]
≤ Kean2

[√
2

π

∫ +∞

(n−x)/
√
T
e−z

2/2dz +

√
2

π

∫ +∞

(n+x)/
√
Tt
e−z

2/2dz

]
.

Thanks to Lemma A.0.1, by letting n → ∞, we get u(T − t, x) = 0 because a < 1/(2T ). We can extend
it to the case where a < 1/(2T ) does not hold, by choosing T0 = 0 < T1 < . . . < Tk = T such that
a < 1/(2(Ti − Ti−1)), i ∈ {1, . . . , k} and then showing that u = 0 on each strip.

Note. The function
h(t, x)

∆
=
x

t
p(t;x, 0) = − ∂

∂x
p(t;x, 0), t > 0, x ∈ R, (3.8)

satisfies the heat equation 3.4 on every strip of the form (0, T ]×R, the condition 3.7 for every 0 < a < (1/2T ),
as well as 3.6 for every x 6= 0.

3.2.2 Nonnegative solutions of the Heat Equation

Thanks to the representation 3.5, if the initial temperature f is nonnegative, the temperature u should remain
nonnegative for all t > 0. We now want to characterize the nonnegative solutions of the heat equation.

Theorem 3.2.3. Let v(t, x) be a nonnegative function defined on a strip (0, T )×R, where 0 < T <∞. The
following four conditions are equivalent.

1. For some nondecreasing function F : R → R,

v(t, x) =

∫ +∞

−∞
p(T − t;x, y)dF (y), 0 < t < T, x ∈ R. (3.9)

2. v is of class C1,2 on (0, T )× R and satisfies the backward heat equation

∂v

∂t
+

1

2

∂2v

∂x2
= 0 (3.10)

on this strip.

3. For a Brownian family {Ws, Fs; 0 ≤ s < ∞}, (Ω,F), {Px}x∈R and each fixed t ∈ (0, T ), x ∈ R, the
process {v(t+ s,Ws), Fs; 0 ≤ s < T − t} is a martingale on (Ω,F ,Px).

4. For a Brownian family {Ws, Fs; 0 ≤ s <∞}, (Ω,F), {Px}x∈R we have

v(t, x) = Exv(t+ s,Ws), 0 < t ≤ t+ s < T, x ∈ R. (3.11)
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Proof. 1⇒ 2 : We have
∂

∂t
p(T − t;x, y) +

1

2

∂2

∂x2
p(T − t;x, y) = 0, then by differentiating under the integral,

v satisfies the backward heat equation 3.10. We have for a > 1/(2T ),∫
R
e−ay

2
dF (y) =

√
π

a
v(T − 1/2a, 0) <∞,

it is the same condition as in the Theorem 3.2.1. We conclude likewise.
2 ⇒ 3 : For 0 ≤ s < T − t and a < x < b, we apply the Itô’s rule and use the backward heat equation,

to get

v(t+ s ∧ Ta ∧ Tb,Ws∧Ta∧Tb) = v(t,W0) +

∫ s∧Ta∧Tb

0

∂

∂x
v(t+ σ,Wσ)dWσ a.s. .

Then, by taking the expectations, we obtain

v(t, x) = Ex[v(t+ s ∧ Ta ∧ Tb,Ws∧Ta∧Tb)]. (3.12)

Therefore, by Fatou’s Lemma, by letting a ↓ −∞ and b→ +∞, we get

v(t, x) ≥ Exv(t+ s,Ws), 0 < t ≤ t+ s < T, x ∈ R. (3.13)

Let 0 ≤ s1 ≤ s2 < T − t, by the Markov property, we have

Ex[v(t+ s2,Ws2)|Fs1 ] = f(Ws1), (3.14)

where
f(y) = Eyv(t+ s2,Ws2−s1).

From 3.13, we obtain
v(t+ s1) ≥ Ex[v(t+ s2,Ws2)|Fs1 ].

Thus {v(t + s,Ws), 0 ≤ s < T − t} is a supermartingale on (Ω,F ,Px). Let us now prove the reverse
inequality. We use 3.12,

v(t, x) = Ex[v(t+ s ∧ Ta ∧ Tb,Ws∧Ta∧Tb)]

= Ex[v(t+ s,Ws)1s≤Ta∧Tb ] + Ex[v(t+ Ta, a)1Ta<s∧Tb ] + Ex[v(t+ Tb, b)1Tb<s+Ta ]

≤ Ex[v(t+ s,Ws)] + Ex[v(t+ Ta, a)1Ta<s] + Ex[v(t+ Tb, b)1Tb<s].

Now we want to show that the two last terms converge to zero when a (respectively b) converges to −∞
(respectively +∞). Both are the same, we do it only for b. Let us show that for B large enough,∫ +∞

B
Ex[v(t+ Tb, b)1Tb<s]db < +∞.

We choose x ∈ R, 0 < t < T , 0 ≤ s < t so that s+ t < T . We have

Px(Tb ∈ dσ) =
b− x√
2πσ3

e−(b−x)2/2σdσ = h(σ, b− x)dσ, b > x, σ > 0.

For B ≥ x enough large and b ≥ B, h(σ, b−x) is an increasing function of σ ∈ (0, s). Therefore for r ∈ (s, t)
and B perhaps larger, we have

h(s, b− x) ≤
√

r

s3
p(r;x, b).

It follows that ∫ +∞

B
Ex[v(t+ Tb, b)1Tb<s]db =

∫ +∞

B

∫ s

0
v(t+ σ, b)h(σ, b− x)dσdb

≤
√

r

s3

∫ s

0

∫ +∞

B
v(t+ σ, b)p(r, x, b)dbdσ

≤
√

r

s3

∫ s

0
Exv(t+ σ,Wr)dσ

≤
√

r

s3

∫ s

0
v(t+ σ − r, x)dσ <∞ with 3.13.
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It proves 3.11 for x ∈ R, 0 < t ≤ t + s < T with s < t. Now we want to remove the restriction s < t.
We prove by induction on k that 0 < t ≤ t + s < T and s < kt implies v(t, x) = Exv(t + s,Ws). We have
etablished k = 1. Assume it for k ≥ 1, then as we have done, {v(t+ s,Ws), 0 ≤ s < kt} is a martingale. Let
s2 ∈ [kt, (k + 1)t], s1 ∈ [0, kt) with 0 < s2 − s1 < t. Then,

Exv(t+ s2,Ws2) = Ex [Ex [v(t+ s2,Ws2)|Fs1 ]]

= Exv(t+ s1,Ws1) thanks to 3.14
= v(t, x) by induction.

3⇒ 4 : With the previous proof, we have the result.
4⇒ 1 : See [1, Section 4.3. p.260].

Corollary 3.2.4. Let u(t, x) be a nonnegative function defined on a strip (0, T ) × R, where 0 < T ≤ ∞.
The following four conditions are equivalent.

1. For some nondecreasing function F : R→ R,

u(t, x) =

∫ +∞

−∞
p(t;x, y)dF (y), 0 < t < T, x ∈ R. (3.15)

2. u is of class C1,2 on (0, T )× R and satisfies the heat equation 3.4 there.

3. For a Brownian family {Ws, Fs; 0 ≤ s < ∞}, (Ω,F), {Px}x∈R and each fixed t ∈ (0, T ), x ∈ R, the
process {u(t− s,Ws), Fs; 0 ≤ s < t} is a martingale on (Ω,F ,Px).

4. For a Brownian family {Ws, Fs; 0 ≤ s <∞}, (Ω,F), {Px}x∈R we have

u(t, x) = Exu(t− s,Ws), 0 < s ≤ t < T, x ∈ R. (3.16)

Proof. When T <∞, we use the previous Theorem with v(t, x) = u(T − t, x).
When T = ∞, let us define for all n ∈ N, x ∈ R and 0 < t < n, vn(t, x)

∆
= u(n − t, x). Then we apply

Theorem 3.2.3 to each vn with T = n and get that 2, 3 and 4 are equivalent. They are implied by 1 and
they imply that there exists for all n ∈ N∗, a nondecreasing function F : R → R such that we have 3.15 on
(0, n)× R. Then, for t ≥ n, we have from 3.16,

u(t, x) = Ex
(n

2
,Wt−n

2

)
=

∫
R
u
(n

2
, z
)
p
(
t− n

2
;x, z

)
dz

=

∫
R

∫
R
p
(n

2
; z, y

)
p
(
t− n

2
;x, z

)
dzdF (y)

=

∫
R
p(t;x, y)dF (y).

Thus 1 is proved.

Proposition 3.2.1. Let v(t, x) be a nonnegative function defined on the half-plane (0,∞)×R. With T =∞,
conditions 2, 3, and 4 of Theorem 3.2.3 are equivalent to one another and to :

1. for some nondecreasing function F : R→ R,

v(t, x) =

∫ +∞

−∞
exp(yx− 1

2
y2t)dF (y), 0 < t <∞, x ∈ R. (3.17)

Proof. The equivalence of 2, 3 and 4 follow from Corollary 3.2.4. If v satisfies 3.17, then by differentiating
under the integral, justified as in Theorem 3.2.3, we get the backward heat equation, and thus 2. Now, if v
satisfies 2 then u defined by

v(t, x) =

√
2π

t
exp

(
x2

2t

)
u

(
1

t
,
x

t

)
, 0 < t <∞, x ∈ R,

satisfies condition 2 of Corollary 3.2.4 and then condition 1 of the same Corollary. Thus follows 3.17.
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3.2.3 Boundary crossing probabilities for Brownian motion

We have established stochastic representations for the temperatures on different rods and we can now use it
to compute boundary-crossing probabilities for Brownian motion.
The representation 3.17 has some consequences. Let us consider a positive function v(t, x) which is defined
and of class C1,2 on (0,∞)×R, and satisfies the backward heat equation 3.10. Then v admits the represen-
tation 3.17 for some F , thanks to 3.2.1.
We differentiate under the integral and get

∂

∂t
v(t, x) = −1

2

∫
R
y2 exp

(
yx− 1

2
y2t

)
dF (y) < 0, 0 < t <∞, x ∈ R.

And because of the backward heat equation v(t, ·) is convex for each t > 0. In particular, lim
t↓0

v(t, 0) exists.

Now we assume that this limit is finite, and, without loss of generality (by scaling), that

lim
t↓0

v(t, 0) = 1. (3.18)

We also assume that
lim
t→∞

v(t, 0) = 0, (3.19)

lim
x→+∞

v(t, x) = +∞, 0 < t <∞, (3.20)

and lim
x→−∞

v(t, x) = 0, 0 < t <∞. (3.21)

3.18-3.21 are satisfied if and only if F is a probability distribution function with F (0+) = 0. By imposing
this condition, 3.17 becomes

v(t, x) =

∫ +∞

0+
exp

(
yx− 1

2
y2t

)
dF (y), 0 < t <∞, x ∈ R, (3.22)

where F (+∞) = 1 and F (0+) = 0. This shows that v(t, ·) is strictly increasing. Thus by the implicit
function theorem, for each t > 0 and b > 0, there is an unique number A(t, b) such that v(t, A(t, b)) = b and
A(·, b) is continuous. We can verify that A(·, b) is strictly increasing. We define A(0, b) = lim

t↓0
A(t, b).

We want to know how one can compute the probability that a Brownian path W will eventually cross the
curve A(·, b). Computing the probability that a Brownian motion crosses a given, time-dependant continuous
boundary {ψ(t); 0 ≤ t < ∞} is thereby reduced to find a solution v to the backward heat equation which
also satisfied 3.18- 3.21 and v(t, ψ(t)) = b, 0 ≤ t <∞, for some b > 0.

Let {Wt, Ft; 0 ≤ t <∞},(Ω,F),{Px}x∈R be a Brownian family, and define

Zt
∆
= v(t,Wt), 0 < t <∞.

For 0 < s < t, we have from the Markov property and condition 4 of Proposition 3.2.1:

E0[Zt|Fs] = f(Ws) = v(s,Ws) = Zs a.s.,

where f(y)
∆
= Eyv(t,Wt−s). That is to say that {Zt, Ft; 0 < t <∞} is a continuous, nonnegative martingale.

Let {tn} be a sequence of positive numbers with tn ↓ 0, and we can define Z0 = lim
n→∞

Ztn . We have that,
thanks to the Blumenthal Law, Z0 is a.s. constant.

Lemma 3.2.1. Z ∆
= {Zt, Ft; 0 ≤ t < ∞} is a continuous, nonnegative martingale under P0 and satisfies

Z0 = 1, Z∞ = 0, P0-a.s.

Proof. See [1, Section 4.3 p.263 ].
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We can now obtain the probability that a Brownian path ever crosses the boundary {A(t, b); 0 ≤ t <∞},
for b ∈ R. Define the stopping time T ∆

= inf{t ≥ 0; Zt = b}. Then, {ZT∧t, Ft, 0 ≤ t <∞} is a martingale.
It follows that for every A ∈ F0 and t ≥ 0,

E0
[
Z01A∩{Z0<b}

]
= E0

[
1A∩{Z0<b}E

0 [ZT∧t|F0]
]

= E0
[
ZT∧t1A∩{Z0<b}

]
= E0

[
b1A∩{Z0<b}∩{T≤t}

]
+ E0

[
Zt1A∩{Z0<b}∩{T>t}

]
.

But Zt1T<t ≤ b and lim
t→∞

Zt1T<t = 0. So, by the dominated convergence theorem, we obtain

E0
[
Z01A∩{Z0<b}

]
= bE0

[
1A∩{Z0<b}∩{T<∞}

]
= bE0

[
E0
[
1A∩{Z0<b}∩{T≤t}|F0

]]
= bE0

[
1A∩{Z0<b}P

0(T <∞|F0)
]
.

It follows that
Z0

b
= P0(T <∞|F0) a.s. on {Z0 < b}. And then, using that Z0 = 1 a.s.,

P0(T <∞) =
1

b
P0(1 < b) + P0(1 ≥ b).

So the probability that a Brownian path ever crosses the boundary {A(t, b); 0 ≤ t <∞}, for b ∈ R, is

P0(T <∞) =

{
1 if b ≤ 1
1

b
if 1 < b.

3.2.4 Mixed initial-boundary value problems

Let’s discuss about the temperature in a semi-infinite rod and the relation of it to Brownian motion absorbed
at the origin. We suppose that f : (0,∞) → R is a Borel-measurable function and that there exists a > 0
such that ∫ +∞

0
e−ax

2 |f(x)|dx <∞. (3.23)

We define
u1(t, x)

∆
= Ex[f(Wt)1{T0>t}], 0 < t <

1

2a
, x > 0. (3.24)

Moreover, we have
Px(Wt > y, T0 > t) = Px(Wt > y)− Px(Wt > y, T0 ≤ t)

= Px(Wt > y)− Px(Wt < −y),

where the last equality comes from the reflection principle. Indeed, the Brownian path has to go to zero
before t, so as we have done previously, we can draw a "shadow path" which is the reflect about the level
zero. See on Figure 3.3.

Then by derivating, we obtain

Px(Wt ∈ dy, T0 > t) = (p(t;x, y)− p(t;x,−y))dy,

for t > 0, x > 0, y > 0 and thus

u1(t, x) =

∫ +∞

0
f(y)p(t;x, y)dy −

∫ 0

−∞
f(−y)p(t;x, y)dy. (3.25)

As seen before, u1 has derivative of all orders, and if f(y) = −f(−y) for all y > 0, satisfies the heat equation
3.4,

f(x) = lim
t↓0
y→x

u1(t, y)

at all continuity points of f and

lim
y↓0

u1(t, y) = 0, 0 < t <
1

2a
.
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Figure 3.3: The reflection principle.

We can see u1(t, x) as the temperature in a semi-infinite rod along the nonnegative x-axis, when the
temperature at x = 0 equals to zero and the initial temperature at y > 0 is f(y). Now we suppose that the
initial temperature in a semi-infinite rod is identically zero, but the temperature at the endpoint x = 0 at
time t is g(t), where g : (0, 1/2a)→ R is bounded and continuous. We write

u2(t, x)
∆
= Ex[g(t− T0)1{T0≤t}]

=

∫ t

0
g(t− s)h(s, x)ds

=

∫ t

0
g(s)h(t− s, x)ds, 0 < t <

1

2a
, x > 0,

(3.26)

with h given by 3.8. g is a solution to the heat equation 3.4, because h is (Note 3.2.1) and h(0, x) = 0, for
x > 0. We can rewrite it to

u2(t, x) = E0[g(t− Tx)1{Tx≤t}], 0 < t <
1

2a
, x > 0.

By bounded convergence theorem, we get that

lim
s→t
x↓0

u2(s, x) = g(t), 0 < t <
1

2a
,

lim
t↓0
y→x

u2(t, y) = 0, 0 < x <∞.

So now we can add u1 and u2 to get a solution to the problem with initial datum f and time-dependant
boundary condition g(t) at x = 0.

3.3 The parabolic equation and the formulas of Feynman and Kac

We will now see a representation for the solution of the parabolic equation{
∂u

∂t
+ ku =

1

2
∆u+ g, (t, x) ∈ (0,∞)× Rd

u(0, x) = f(x), x ∈ Rd,
(3.27)

for k : Rd → [0,∞), g : (0,∞)× Rd → R and f : Rd → R.
In the case g = 0, we define the Laplace transform

zα(x)
∆
=

∫ +∞

0
e−αtu(t, x)dt, x ∈ Rd. (3.28)
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We have
1

2
∆zα =

1

2

∫ +∞

0
e−αt∆udt

=

∫ +∞

0
e−αt

(
∂u

∂t
+ ku

)
dt by using 3.27,

= (k + α)zα − f by using lim
t→+∞

e−αtu(t, x) = 0.

Let {Wt, Ft; 0 ≤ t <∞}, (Ω,F), {Px}x∈Rd be a d-dimensional Brownian family.

3.3.1 The multidimensional formula

Definition 3.3.1. Let f : Rd → R, k : Rd → [0,∞), and g : [0, T ] × Rd → R be continuous functions. We
suppose that v is a continuous, real-valued function on [0, T ]× Rd, of class C1,2 on [0, T )× Rd and satisfies

− ∂v

∂t
+ kv =

1

2
∆v + g, on [0, T )× Rd, (3.29)

v(T, x) = f(x), x ∈ Rd. (3.30)

We call such function a solution of the Cauchy problem for the backward heat equation 3.29 with potential k
and Lagrangian g subject to the terminal condition 3.30.

Theorem 3.3.1. Let v be as in the previous definition and assume that there exist some constants K > 0
and 0 < a < 1/(2Td) such that

max
0≤t≤T

|v(t, x)|+ max
0≤t≤T

|g(t, x)| ≤ Kea‖x‖2 , ∀x ∈ Rd. (3.31)

Then v admits the stochastic representation

v(t, x) = Ex
[
f(WT−t) exp

(
−
∫ T−t

0
k(Ws)ds

)
+

∫ T−t

0
g(t+ θ,Wθ) exp

(
−
∫ θ

0
k(Ws)ds

)
dθ

]
, 0 ≤ t ≤ T, x ∈ Rd.

(3.32)
And thus, v is unique.

Note. If g ≥ 0 on [0, T ]× Rd, then we can replace the condition 3.31 by

max
0≤t≤T

|v(t, x)| ≤ Kea‖x‖2 , ∀x ∈ Rd, (3.33)

since the second integral is well-defined.
Note. If v satisfies 3.33 and the differential inequality

−∂v
∂t

+ kv ≥ 1

2
∆v on [0, T )× Rd,

with a continuous potential k : Rd → [0,∞), then by applying Theorem 3.3.1, v ≥ 0 on [0, T ]× Rd.

Proof. Define Sn = inf{t ≥ 0; ‖Wt ‖≥ n
√
d}, for n ≥ 1. Let 0 < r < T − t. By Itô’s rule, we have

d

[
v(t+ θ,Wθ) exp

(
−
∫ θ

0
k(Ws)ds

)]
= ∂τ

(
v(t+ θ,Wθ) exp

(
−
∫ θ

0
k(Ws)ds

))
+ ∂x

(
v(t+ θ,Wθ) exp

(
−
∫ θ

0
k(Ws)ds

))
+

1

2
∂2
x

(
v(t+ θ,Wθ) exp

(
−
∫ θ

0
k(Ws)ds

))
= exp

(
−
∫ θ

0
k(Ws)ds

)
[∂τv(t+ θ,Wθ)− k(Wθ)v(t+ θ,Wθ)]

+ exp

(
−
∫ θ

0
k(Ws)ds

)[
∂xv(t+ θ,Wθ) +

1

2
∂2
xv(t+ θ,Wθ)

]
= exp

(
−
∫ θ

0
k(Ws)ds

)
[∂xv(t+ θ,Wθ)− g(t+ θ,Wθ)] with 3.29.
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Now, let us integrate on [0, r ∧ Sn], we get a.s.,

v(t+r∧Sn,Wr∧Sn) exp

(
−
∫ r∧Sn

0
k(Ws)ds

)
= v(t,W0)+

∫ r∧Sn

0
exp

(
−
∫ θ

0
k(Ws)ds

)
[∂xv(t+ θ,Wθ)− g(t+ θ,Wθ)] .

Then we take the expectations,

v(t, x) = Ex
[
v(t+ r ∧ Sn,Wr∧Sn) exp

(
−
∫ r∧Sn

0
k(Ws)ds

)]
+ Ex

[∫ r∧Sn

0
exp

(
−
∫ θ

0
k(Ws)ds

)
g(t+ θ,Wθ)dθ

]
= Ex

[
v(t+ r,Wr) exp

(
−
∫ r

0
k(Ws)ds

)
1r≤Sn

]
+ Ex

[
v(t+ Sn,WSn) exp

(
−
∫ Sn

0
k(Ws)ds

)
1r<Sn

]
+ Ex

[∫ r∧Sn

0
exp

(
−
∫ θ

0
k(Ws)ds

)
g(t+ θ,Wθ)dθ

]
.

Therefore, we have∣∣∣∣∫ r∧Sn

0
exp

(
−
∫ θ

0
k(Ws)ds

)
g(t+ θ,Wθ)dθ

∣∣∣∣ ≤ ∫ T−t

0
|g(t+ θ,Wθ)| dθ,

which has a finite expectation because of 3.31. By dominated convergence the last term of the right-hand
side converges to

Ex
[∫ T−t

0
exp

(
−
∫ θ

0
k(Ws)ds

)
g(t+ θ,Wθ)dθ

]
,

as n→∞ and r ↑ T − t. Then, the second term is dominated by

Ex [|v(t+ Sn,WSn)| 1Sn≤T−t] ≤ Keadn
2
Px(Sn ≤ T )

≤ Keadn2
d∑
j=1

Px
(

max
0≤t≤T

∣∣∣W (j)
t

∣∣∣ ≥ n)

≤ 2Keadn
2

d∑
j=1

Px
(
W

(j)
T ≥ n

)
+ Px

(
−W (j)

T ≥ n
)
.

But, with Lemma A.0.1, and since 0 < a < 1/(2Td),

eadn
2
Px
(
±W (j)

T ≥ n
)
≤ eadn2

√
T

2π

1

n± x(j)
e−(n±x(j))2/2T −→

n→+∞
0.

By the dominated convergence theorem, the first term converges likewise to

Ex
[
v(T,WT−t) exp

(
−
∫ T−t

0
k(Ws)ds

)]
,

as n→∞ and r ↑ T − t. Thus, we get the Feynman-Kac formula 3.32.

Corollary 3.3.2. Assume that f : Rd → R, k : Rd → [0,∞), and g : [0,∞)× Rd → R are continuous, and
that the continuous function u : [0,∞) × Rd → R is of class C1,2 on (0,∞) × Rd and satisfies 3.27. If for
each finite T > 0 there exist constants K > 0 and 0 < a < 1/(2Td) such that

max
0≤t≤T

|u(t, x)|+ max
0≤t≤T

|g(t, x)| ≤ Kea‖x‖2 , ∀x ∈ R,

then u admits the stochastic representation

u(t, x) = Ex[f(Wt) exp

(
−
∫ t

0
k(Ws)ds

)
+

∫ t

0
g(t− θ,Wθ) exp

(
−
∫ θ

0
k(Ws)ds

)
dθ], 0 ≤ t <∞, x ∈ Rd.

(3.34)

In the case g = 0, we can think of u(t, x) as the temperature at time t ≥ 0 at the point x ∈ Rd of a
medium which is not a perfect heat conductor but instead dissipates heat locally at the rate k (heat flow
with cooling).
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Example 3.3.1. Let us consider the equation

−∂u
∂t

(x, t) + x2u(x, t) =
1

2
∆u, x ∈ R, t ≥ 0,

with initial condition
u(0, x) = 42, ∀x ∈ R.

Thanks to the formula of Feynman and Kac, u admits the stochastic representation for x ∈ R and t ≥ 0,

u(t, x) = 42Ex
[
exp

(
−
∫ t

0
W 2
s ds

)]
= 42Ex

[
exp

(
− lim
n→∞

t

n

n∑
k=1

W 2
k t
n

)]
.

The Figure 3.4 shows the solution.

Figure 3.4: Solution to the problem.

The Feynman-Kac formula 3.34 suggests that this situation is equivalent to Brownian motion with killing
of particles at the same rate k. The probability that the particles survives up to time t, conditional on the
path {Ws, 0 ≤ s ≤ t} is exp{−

∫ t
0 k(Ws)ds}.

3.3.2 The one-dimensional formula

Definition 3.3.2. A Borel-measurable function f : R → R is called piecewise-continuous if, it admits left-
and right-hand limits everywhere on R and it has only finitely many points of discontinuity in every bounded
interval. We note Df the set of discontinuity points of f . A continuous function f : R→ R is called piecewise
Cj , j ≥ 1 if, its derivatives f (i), 1 ≤ i ≤ j−1, are continuous, and the derivative f (j) is piecewise-continuous.

Theorem 3.3.3. Let f : R→ R and k : R→ [0,∞) be piecewise-continuous functions with∫ +∞

−∞
|f(x+ y)|e−|y|

√
2αdy <∞, ∀x ∈ R, (3.35)

for some fixed constant α > 0. Then the function z defined by

z(x) = Ex
∫ +∞

0
f(Wt) exp

(
−αt−

∫ t

0
k(Ws)ds

)
dt (3.36)
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is piecewise C2 and satisfies

(α+ k)z =
1

2
z′′ + f, on R\(Df ∪Dk). (3.37)

Note. With the Laplace transform computation,∫ +∞

0
e−αt

1√
2πt

e−ξ
2/2tdt =

1√
2α
e−|ξ|

√
2α, α > 0, ξ ∈ R,

we can replace 3.35 by the equivalent condition

Ex
∫ +∞

0
e−αt|f(Wt)|dt <∞, ∀x ∈ R. (3.38)

Proof. We define the resolvent operator Gα for a piecewise-continuous function g, by

Gαg(x)
∆
= Ex

∫ +∞

0
e−αtg (Wt) dt =

1√
2α

∫
R
e−|x−y|

√
2αg(y)dy, x ∈ R.

We differentiate it and obtain

(Gαg)′ (x) =

∫ +∞

x
e(x−y)

√
2αg(y)dy −

∫ x

−∞
e(y−x)

√
2αg(y)dy, x ∈ R

and
(Gαg)′′ (x) = −2g(x) + 2α (Gαg) (x), x ∈ R\Dg.

Let us apply this equality for g = f and g = kz, we obtain

(Gαf)′′ (x) = −2f(x) + 2α (Gαf) (x), x ∈ R\Df

and
(Gαkz)

′′ (x) = −2kz(x) + 2α (Gαkz) (x), x ∈ R\Dkz.

Moreover, we will show later that
(Gαkz) = (Gαf)− z (3.39)

and that
(Gα|kz|) (x) <∞, x ∈ R. (3.40)

Thus,
(Gαf)′′ − z′′ = (Gαkz)

′′ = −2kz + 2α (Gαf)− 2αz

so,
−2f + 2α (Gαf)− z′′ = −2kz + 2α (Gαf)− 2αz.

Thanks to 3.39, it follows, on R\(Df ∪Dkz),

1

2
z′′ + f = z(k + α).

With the dominated convergence theorem, we can show that z is continuous, so Dkz ⊆ Dk and we have 3.37.
By integrated 3.37, we check that z′ is continuous.
Now we have to show 3.39. We observe that

0 ≤
∫ t

0
k (Ws) exp

(
−
∫ t

s
k(Wu)du

)
ds =

∫ t

0
k (Ws) exp

(
−
∫ t

0
k(Wu)du+

∫ s

0
k(Wu)du

)
ds

= exp

(
−
∫ t

0
k(Wu)du

)[
exp

(∫ s

0
k(Wu)du

)]t
0

= 1− exp

(
−
∫ t

0
k(Wu)du

)
≤ 1.
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Then we have, for x ∈ R,

(Gαf − z) (x) = Ex
[∫ +∞

0
e−αtf (Wt)

(
1− exp

(
−
∫ t

0
k (Ws) ds

))
dt

]
= Ex

[∫ +∞

0
e−αtf (Wt)

∫ t

0
k (Ws) exp

(
−
∫ t

s
k (Wu) du

)
dsdt

]
= Ex

[∫ +∞

0
k (Ws)

∫ +∞

s
e−αtf (Wt) exp

(
−
∫ t

s
k (Wu) du

)
dtds

]
by Fubini’s theorem,

=

∫ +∞

0
Ex
[
k (Ws)

∫ +∞

s
e−αtf (Wt) exp

(
−
∫ t

s
k (Wu) du

)
dt

]
ds by Fubini’s theorem,

=

∫ +∞

0
Ex
[
k (Ws) e

−αs
∫ +∞

0
e−αtf (Wt+s) exp

(
−
∫ t

0
k (Ws+u) du

)
dt

]
ds

=

∫ +∞

0
Ex
[
Ex
[
k (Ws) e

−αs
∫ +∞

0
e−αtf (Wt+s) exp

(
−
∫ t

0
k (Ws+u) du

)
dt|Fs

]]
ds

=

∫ +∞

0
Ex
[
k (Ws) e

−αsEx
[∫ +∞

0
e−αtf (Wt+s) exp

(
−
∫ t

0
k (Ws+u) du

)
dt|Fs

]]
ds

= Ex
[∫ +∞

0
k (Ws) e

−αsEx
[∫ +∞

0
e−αtf (Wt+s) exp

(
−
∫ t

0
k (Ws+u) du

)
dt|Fs

]
ds

]
by Fubini’s theorem,

= Ex
[∫ +∞

0
e−αsk (Ws) z (Ws) ds

]
by Markov property,

= (Gαkz) (x).

We have proved 3.39.
Now let’s replace f by |f | in 3.36, then we get a nonnegative function z̃ ≥ |z| and thanks to 3.35, for x ∈ R,

(Gα|kz|) (x) ≤ (Gαkz̃) (x) = ((Gα|f |)− z̃) (x) <∞.

We have proved 3.40.

Let us see some applications of Theorem 3.3.3.
As for the discrete-time random walk, we have:

Proposition 3.3.1 (Arc-Sine Law for the Occupation Time of (0,∞)). Let Γ+(t)
∆
=
∫ t

0 1(0,∞)(Ws)ds. Then

P0(Γ+(t) ≤ θ) =

∫ θ/t

0

ds

π
√
s(1− s)

=
2

π
arcsin

√
θ

t
, 0 ≤ θ ≤ t. (3.41)

Proof. For α > 0, and β > 0, we define

z(x)
∆
= Ex

∫ +∞

0
exp

(
−αt− β

∫ t

0
1(0,+∞) (Ws) ds

)
dt, x ∈ R.

By Theorem 3.3.3, it satisfies the equation

αz =

{
1
2z
′′ − βz + 1 x > 0,

1
2z
′′ + 1 x < 0,

and the conditions
z(0+) = z(0−), z′(0+) = z′(0−).

So bounded solutions of this equation have the form

z(x) =

{
Ae−x

√
2(α+β) + 1

α+β x > 0,

Bex
√

2α + 1
α x < 0.
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Using the continuity of z and z′ at x = 0, we get

A =

√
α+ β −

√
α

(α+ β)
√
α

.

Thus

E0

[∫ +∞

0
e−αt exp

(
−β
∫ t

0
1(0,+∞) (Ws) ds

)
dt

]
= z(0) =

1√
(α+ β)α

.

But ∫ +∞

0
e−αt

∫ t

0

e−βθ

π
√
θ(t− θ)

dθdt =

∫ +∞

0

e−βθ

π
√
θ

∫ +∞

0

e−αt√
t− θ

dtdθ

=
1

π

∫ +∞

0

e−(α+β)θ

√
θ

∫ +∞

0

e−αs√
s

dsdθ

=
1√

α(α+ β)

= z(0),

since ∫ +∞

0

e−γt√
t

=
1
√
γ

Γ

(
1

2

)
=

√
π

γ
, γ > 0.

The uniqueness of Laplace transform implies

E0e−βΓ+(t) =

∫ t

0

e−βθ

π
√
θ(t− θ)

dθ.

And thus,

P0(Γ+(t) ≤ θ) =

∫ θ/t

0

ds

π
√
s(1− s)

, 0 ≤ θ ≤ t.

Proposition 3.3.2 (Occupation Time of (0,∞) until First Hitting b > 0). For β > 0, b > 0, we have

E0 exp(−βΓ+(Tb))
∆
= E0 exp

(
−β
∫ Tb

0
1(0,∞)(Ws)ds

)
=

1

cosh b
√

2β
. (3.42)

Proof. For b, α, β, γ positive numbers, we define

Γb(t)
∆
=

∫ t

0
1(b,+∞) (Ws) ds

and

z(x)
∆
= Ex

∫ +∞

0
1(0,+∞) (Wt) exp (−αt− βΓ+(t)− γΓb(t)) dt, x ∈ R.

We have

z(0) = E0

∫ +∞

0
1(0,+∞) (Wt) exp (−αt− βΓ+(t)− γΓb(t)) dt

= E0

∫ Tb

0
1(0,+∞) (Wt) exp (−αt− βΓ+(t)) dt+ E0

∫ +∞

Tb

1(0,+∞) (Wt) exp (−αt− βΓ+(t)− γΓb(t)) dt.

Since Γb(t) > 0 a.s. on {Tb < t}, we obtain

lim
γ↑+∞

z(0) = E0

∫ Tb

0
1(0,+∞) (Wt) exp (−αt− βΓ+(t)) dt

and

lim
α↓0

lim
γ↑+∞

z(0) = E0

∫ Tb

0
1(0,+∞) (Wt) exp (−βΓ+(t)) dt

= E0

∫ Tb

0
exp (−αt− βΓ+(t)) dΓ+(t)

=
1

b

[
1− E0 exp (−βΓ+(Tb))

]
.
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According to Theorem 3.3.3, z is piecewise C2 on R and satisfies
αz = 1

2z
′′ + f x < 0,

zσ = 1
2z
′′ + 1 0 < x < b,

(σ + γ)z = 1
2z
′′ + 1 x > b,

where σ = α+ β.
The bounded solutions have the form

z(x) =


Aex

√
2α x < 0,

Bex
√

2α + Ce−x
√

2α + 1
σ 0 < x < b,

De−x
√

2(σ+γ) + 1
σ+γ x > b.

Now, using the continuity of z and z′ at x = 0, we get the value of A, B, C and D. In particular, using
z(0) = A, we obtain as γ ↑ +∞ and then α ↓ 0 that

E0 exp(−βΓ+(Tb)) =
1

cosh b
√

2β
.

3.4 Monte-Carlo methods and Coding

3.4.1 Theory

Let g be a measurable function such that Ex|g (Wt) |2 <∞ and x ∈ Rd. By the Law of Large Numbers, we
have

un(x)
∆
=

1

n

n∑
i=1

g
(
W

(i),x
t

)
−→

n→+∞
u(x)

∆
= Exg (Wt) a.s. .

un is called to be a Monte-Carlo estimator. It is unbiaised since Eun(x) = Exg (Wt). We now use the
Central Limit Theorem to find a confidence interval. We have

un(x)− u(x)

σ/
√
n

=⇒
n→+∞

N (0, 1),

where σ = Exg2 (Wt)− u2(x). We approximate σ with

σ̂
∆
=

√√√√ 1

n

n∑
i=1

(
g
(
W

(i),x
t

)
− un(x)

)2
=

√√√√ 1

n

n∑
i=1

g2
(
W

(i),x
t

)
− u2

n(x).

Thus, we get the confidence interval of 95% for u(x)[
un(x)− 1, 96

σ̂√
n

; un(x) + 1, 96
σ̂√
n

]
.

3.4.2 Dirichlet Problem in the two-dimensional unit disk

We consider the Dirichlet problem on the two-dimensional unit disk B,{
∆u(X) = 0 X = (x, y) ∈ B,
u(X) = 1

2 ln
[
(x− 2)2 + y2

]
X = (x, y) ∈ S1.

(3.43)

u can be defined on B, and is harmonic there. So the exact solution to this problem is given by

u(X) =
1

2
ln
[
(x− 2)2 + y2

]
, X = (x, y) ∈ B.

Let us now use our Monte-Carlo estimator to approximate the value of our solution at points (0, 0),
(0.25, 0.25) and (0.5, 0.5). See Figure 3.5.

Let M be the number of random walks we use to do the mean. We can calculate the absolute error
between the approximation and the real value, the confidence interval and also the running time. See Figure
3.12.
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×

u(X) =
1

2
ln
[
(x− 2)2 + y2

]

×

×

1

Figure 3.5: Dirichlet problem on unit disk.

3.4.3 Dirichlet Problem on the square

In this section, we consider the Dirichlet problem on the square [0, 1]× [0, 1],
∆u(X) = 0 X = (x, y) ∈ [0, 1]× [0, 1]
u(x, 0) = 0 0 < x < 1,
u(x, 1) = f(x) 0 < x < 1,
u(0, y) = u(1, y) = 0 0 < y < 1,

(3.44)

where

f(x) =

{
75x if 0 ≤ x ≤ 2

3
150(1− x) if 2

3 < x ≤ 1.

Note. The sine series for f is

f(x) =
450

π2

+∞∑
n=1

sin
(

2nπ
3

)
n2

sin(nπx).

Assume that the solution to this problem is given by

u(x, y) =
450

π2

+∞∑
n=1

sin
(

2nπ
3

)
n2 sinh(nπ)

sin(nπx) sinh(nπy).

As previously we use our Monte-Carlo estimator to approximate the value of our solution at points (0.5, 0.5),
(0.25, 0.25), (0.25, 0.9) and (0.5, 0.9). See Figure 3.6. Because of the boundary conditions which are often
zero, we use an ε border. That is to say that we define f on [0, 1]× [1− ε, 1 + ε]. Here we choose ε = 0.05.
See Figure 3.13.

× ×

×

×

f(x)

0

0 0

Figure 3.6: Dirichlet problem on the unit square.
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As we can see, the error is not very good. It could be due to the fact that a Brownian motion goes
uniformly in the four directions and that three directions on four have a zero boundary. The error is
proportionnal to the value of u.

3.4.4 Dirichlet Problem using the Spherical Process

In this section we will use a property of the Brownian motion: a Brownian motion is uniformly distributed
on the 2-dimensional unit circle, it goes uniformly in all directions. So, instead of doing all the path of the
Brownian motion still it goes out our domain Ω, we will proceed differently. Let X be the starting point,
the point where we want to calculate the value of our solution. Let ε be a positive number. We calculate the
distance from X to the boundary of Ω. And then using the fact thatWτBr is distributed as r(cos(U), sin(U)),
where r = dist(X, ∂Ω) − ε and U is uniformly distributed on [0, 2π), we take X1 = r(cos(U), sin(U)). And
we repeat the same with X1 until there exist n such that dist(Xn, ∂Ω) < ε. Then we keep Xn as WτΩ . See
Figure 3.7 to see such a path.

Figure 3.7: A path starting at (0.5, 0.5) in the unit square, according to the spherical process.

With this method, we obtain quite the same results concerning the absolute error but the running time
is much better. See 3.8.

X = (0.5, 0.5)

M = 100 M = 1000 M = 10000

running time (sec) 0.02 0.22 2.08

Figure 3.8: Running time for the spherical process.

Let us now use our method to calculate the solution of{
∆u(x) = 0 X = (x, y) ∈ D,
u(x, y) = f(x, y) X = (x, y) ∈ ∂D, (3.45)

where 
f(x, y) = −y + 2 1 ≤ y ≤ 2, x ∈ {0, 1},
f(0, y) = y 0 ≤ y < 1,
f(x, 1) = 2− x 1 < x ≤ 2,
f(x, y) = 0, else,

and D is a L-shaped domain, see Figure 3.9.
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Figure 3.9: The L-shaped domain D.

Figures 3.10 and 3.11 show the solution obtained with this method. The Figure 3.10 was made with
M = 10, the approximation in the middle of the shape is not pretty good but we can see the continuity of
the function. Whereas on Figure 3.11, which was made with M = 100, the approximation is quite better in
the middle but we can’t see very well the continuity of the function on boundaries. In the second Figure,
the discretisation step is not the same in the middle of the shap and on boundaries: it is chosen smaller on
the boundaries in order to have a better approximation of the solution.

Figure 3.10: Solution with M=10.

Figure 3.11: Solution with M=100.
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X = (0, 0)

M = 100 M = 1000 M = 10000

absolute error 0.016 0.002 0.001
confidence interval 0.073 0.023 0.007
running time (sec) 0.3 2.8 31.6

X = (0.25, 0.25)

M = 100 M = 1000 M = 10000

absolute error 0.027 0.003 0.0004
confidence interval 0.073 0.023 0.007
running time (sec) 0.3 2.6 25.5

X = (0.5, 0.5)

M = 100 M = 1000 M = 10000

absolute error 0.029 0.014 0.0006
confidence interval 0.006 0.019 0.006
running time (sec) 0.2 1.5 15.3

Figure 3.12: Results for the unit circle

X = (0.5, 0.5)

M = 100 M = 1000 M = 10000

absolute error 7.874 7.963 7.953
confidence interval 0.049 0.04 0.012
running time (sec) 0.2 1.7 16.0

X = (0.25, 0.25)

M = 100 M = 1000 M = 10000

absolute error 2.075 2.064 2.045
confidence interval 0.017 0.012 0.006
running time (sec) 0.1 1.2 12.3

X = (0.25, 0.9)

M = 100 M = 1000 M = 10000

absolute error 15.429 15.483 15.455
confidence interval 0.126 0.043 0.015
running time (sec) 0.1 1.2 12.5

X = (0.5, 0.9)

M = 100 M = 1000 M = 10000

absolute error 28.532 28.547 28.582
confidence interval 0.252 0.050 0.0172
running time (sec) 0.2 1.3 15.5

Figure 3.13: Results for the unit square
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Appendix A

Some results

Lemma A.0.1. For all x > 0,

x

1 + x2
e−x

2/2 ≤
∫ +∞

x
e−u

2/2du ≤ 1

x
e−x

2/2.

Proof. Let x > 0. Using integration by parts, we get∫ +∞

x
e−u

2/2du =

[
e−u

2/2

u

]+∞

x

−
∫ +∞

x

e−u
2/2

u2
du

≤ 1

x
e−x

2/2.

Then, using integration by parts again, we obtain∫ +∞

x

x2

u2
e−u

2/2du = xe−x
2/2 −

∫ +∞

x
x2e−u

2/2du.

And then,

xe−x
2/2 ≤

∫ +∞

x
(x2 + 1)e−u

2/2du.

The first inequality follows.

Proposition A.0.1 (Blumenthal zero-one Law). Let {Wt, Ft; 0 ≤ t < ∞}, (Ω,F), {Px}x∈Rd be a d-
dimensional Brownian family. If F ∈ F̃0

∆
= ∩s>0Fs, then for each x ∈ Rd, we have either Px(F ) = 0 or

Px(F ) = 1.

Proof. See [1, Section 2.7. p.94].
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Appendix B

Stochastic calculus

Here are some properties of stochastic calculus we need.

Theorem B.0.1 (Itô’s rule). If W is a Brownian motion and f is a function of class C2 on Rd, then

f(Wt) = f(W0) +

∫ t

0
f ′(Ws)dWs +

1

2

∫ t

0
f ′′(Ws)ds a.s. .

If f depends on time and is continuous differentiable in time, then

f(t,Wt) = f(0,W0) +

∫ t

0
∂tf(s,Ws)ds+

∫ t

0
∂xf(s,Ws)dWs +

1

2

∫ t

0
∂2
xf(s,Ws)ds a.s. .

Moreover if X is a stochastic process such that for almost all ω ∈ Ω, t 7→ Xt(ω) is differentiable, then

f(Wt)Xt = f(W0)X0 +

∫ t

0
Xsf

′(Ws)dWs +

∫ t

0
f(Ws)X

′
sds+

1

2

∫ t

0
Xsf

′′(Ws)ds a.s. .

Proof. See [1, Section 3.3. p.149].

Proposition B.0.2. Let X be a process, W be a Brownian motion on Rd and I an interval of R, then

E
∫
I
XtdWt = 0.

Proof. See [4].
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Appendix C

Scilab Code

Here is the main code used to do the simulation.

function [Xt,Yt]=BMcircle(X0,Y0,N,r,a0,b0)
h=1/N
x=X0; y=Y0;
while (x-a0)**2+(y-b0)**2 <r**2

bruitX = grand(1,1,"nor",0, sqrt(h));
bruitY = grand(1,1,"nor",0, sqrt(h));
x=x+bruitX;
y=y+bruitY;

end
Xt=x; Yt=y;
endfunction

Listing C.1: To calculate WτD , starting at (X0, Y 0), where D is a circle of radius r and center (a0, b0).

function [Xt,Yt]=BMrect(X0,Y0,N,r, R, a0, b0)
h=1/N
x=X0; y=Y0;
while (abs(x-a0)<r/2) and (abs(y-b0)<R/2)

bruitX = grand(1,1,"nor",0, sqrt(h));
bruitY = grand(1,1,"nor",0, sqrt(h));
x=x+bruitX;
y=y+bruitY;

end
Xt=x; Yt=y;

endfunction

Listing C.2: To calculate WτD , starting at (X0, Y 0), where D is a rectangle of largor r, high R and center
(a0, b0).

function [Xt,Yt]= BMuniform(X0,Y0,D,eps)
// D is an array nx2 containing the coordinates of the domain.

pt=[X0,Y0]
r=orthProj(D,pt)
while r>eps

U= 2 * %pi * grand(1,1,'def')
pt=[r * cos(U), r * sin(U)]
r=orthProj(D,pt)

end
Xt=pt(1); Yt=pt(2);

endfunction

Listing C.3: To calculate WτD , starting at (X0, Y 0), where D is a domain, using the spherical process.
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