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The optimal stopping problem
Solution

Some consequences

Let (Ω,F ,P) be a probability space carrying a Brownian motion
(Bt)t≥0. Its canonical filtration (Ft)t≥0 is supposed to satisfy the
usual conditions.

Optimal stopping problem

Let G : R+ → R be a measurable map, satisfying

∀x ∈ R, G (|x |) ≤ cx2 + d , (1)

for some d ∈ R, c > 0.
Goal: maximizing the expectation E [G (|Bτ |)− cτ ], over all
integrable (Ft)-stopping times.
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The optimal stopping problem
Solution

Some consequences

An important case G : |x| 7→ x2

Case G : |x| 7→ |x|p , 0 < p < 2
General case

Wald’s identity

For all integrable (Ft)-stopping time τ ,

E
[
B2
τ

]
= E[τ ].

Proof: Martingale property for (B2
t∧τ − t ∧ τ)t≥0:

∀t ≥ 0, E
[
B2
t∧τ
]

= E [t ∧ τ ] . (?)

Doob’s inequality: for all t ≥ 0,

E

[
sup

s∈[0,t]
|Bs∧τ |2

]
≤ 4E

[
B2
t∧τ
]

= 4E[t ∧ τ ] ≤ 4E[τ ].

So,

E
[
sup
s≥0

B2
s∧τ

]
≤ 4E[τ ] < +∞.

Thus,
(
B2
t∧τ
)
t≥0 is u.i

 CV a.s and in L1 to B2
τ .
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For all integrable (Ft)-stopping time τ ,

E
[
B2
τ

]
= E[τ ].

For c > 0, E
[
B2
τ − cτ

]
= (1− c)E[τ ].

Proposition

sup
τ

E
[
B2
τ − cτ

]
=

{
+∞ if c ∈]0, 1[,
0 elsewhere,

where the supremum is taken over all integrable (Ft)-stopping
times.
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The optimal stopping problem
Solution

Some consequences

An important case G : |x| 7→ x2

Case G : |x| 7→ |x|p , 0 < p < 2
General case

Theorem
Let 0 < p < 2 and c > 0, we have,

sup
τ

E [|Bτ |p − cτ ] =
2− p

p

( p

2c

)p/(2−p)
,

where the supremum is taken over all integrable (Ft)-stopping
times.
The optimal stopping time is

τp,c = inf
{
t ≥ 0, |Bt | =

( p

2c

)1/(2−p)
}

.
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The optimal stopping problem
Solution

Some consequences

An important case G : |x| 7→ x2

Case G : |x| 7→ |x|p , 0 < p < 2
General case

Vτ (G , c) := E [G (|Bτ |)− cτ ] =
∫
R(G (|x |)− cx2)dFBτ (x).

We maximize DG ,c : x 7→ G (|x |)− cx2.
If DG ,c reaches its maximum at x0 ∈ R:

sup
τ

Vτ (G , c) ≤ DG ,c(x0),

equality with Tx0 = inf{t ≥ 0, |Bt | = x0}.

If DG ,c reaches its maximum on ±∞:

for all x ∈ R,
DG ,c(x) ≤ lim

x→+∞
DG ,c(x).

sup
τ

Vτ (G , c) ≤ lim
x→+∞

DG ,c(x).

With Tr , VTr (G , c) = DG ,c(r).

lim
r→+∞

DG ,c(r) ≤ sup
τ

Vτ (G , c).
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The optimal stopping problem
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Some consequences

An important case G : |x| 7→ x2

Case G : |x| 7→ |x|p , 0 < p < 2
General case

Optimality in the first point: Tx0 = inf{t ≥ 0, |Bt | = x0}

VTx0
(G , c) = E

[
G
(∣∣∣BTx0

∣∣∣)− cB2
Tx0

]

= DG ,c(−x0)P
(
BTx0

= −x0

)
+ DG ,c(x0)P

(
BTx0

= x0

)
= DG ,c(x0).
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The optimal stopping problem
Solution

Some consequences

An important case G : |x| 7→ x2

Case G : |x| 7→ |x|p , 0 < p < 2
General case

Theorem
The solution to our optimal stopping problem is

sup
τ

E [G (|Bτ |)− cτ ] = sup
x∈R

(G (|x |)− cx2),

where the supremum is taken over all integrable (Ft)-stopping
times.
When DG ,c reaches a maximum on R, the optimal stopping time
τG ,c = inf {t ≥ 0, |Bt | = argmax DG ,c}.

Example: G : x 7→ ln(x)

D : x 7→ ln(|x |)− cx2 reaches a maximum at ± 1√
2c

.

sup
τ

E [ln(|Bτ |)− cτ ] = −1
2

(ln(2c) + 1).
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The solution to our optimal stopping problem is

sup
τ
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Upper bound for expectation of stopped Brownian motion
Maximal inequalities for randomly stopped Brownian motion

Proposition

For all integrable (Ft)-stopping time τ , if p ∈]0, 2[,

E [|Bτ |p] ≤ E[τ ]p/2.

Proof: For all c > 0, E [|Bτ |p] ≤ cE[τ ] +
2− p

p

( p

2c

)p/(2−p)
.

Then

E [|Bτ |p] ≤ inf
c>0

(
cE[τ ] +

2− p

p

( p

2c

)p/(2−p))
.

Let f : c 7→ cE[τ ] +
2− p

p

( p

2c

)p/(2−p)
. f reaches a minimum at

p

2
E[τ ](p−2)/2 and f

(p
2
E[τ ](p−2)/2

)
= E[τ ]p/2.
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The optimal stopping problem
Solution

Some consequences

Upper bound for expectation of stopped Brownian motion
Maximal inequalities for randomly stopped Brownian motion

Samely,

Theorem
For all integrable (Ft)-stopping time τ ,

E [G (|Bτ |)] ≤ inf
c>0

(
cE[τ ] + sup

x∈R
(G (|x |)− cx2)

)
.

Example: G : x 7→ ln(x)

g : c 7→ cE[τ ]− 1
2

(ln(2c) + 1) reaches a minimum at c =
1

2E[τ ]
.

For all integrable (Ft)-stopping time τ ,

E [ln(|Bτ |)] ≤ 1
2
ln (E[τ ]) .
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Samely,

Theorem
For all integrable (Ft)-stopping time τ ,

E [G (|Bτ |)] ≤ inf
c>0

(
cE[τ ] + sup

x∈R
(G (|x |)− cx2)

)
.

Optimality

If that there exists c0 > 0 such that DG ,c0 : x 7→ G (|x |)− c0x
2

reaches a maximum over R, then

sup
τ

(
E [G (|Bτ |)]− inf

c>0

(
cE[τ ] + sup

x∈R
(G (|x |)− cx2)

))
= 0,

where the supremum is taken over all integrable (Ft)-stopping
times.
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Solution

Some consequences

Upper bound for expectation of stopped Brownian motion
Maximal inequalities for randomly stopped Brownian motion

Proof: Call aG ,c a point where DG ,c reaches its maximum (possibly
infinite) over R̄, σc = inf{t ≥ 0, |Bt | = aG ,c}.

0 = E
[
G
(∣∣Bσc0 ∣∣)− c0σc0

]
− sup

x∈R

(
G (|x |)− c0x

2)
≤ sup

c>0

(
E
[
G
(∣∣Bσc0 ∣∣)− cσc0

]
− sup

x∈R

(
G (|x |)− cx2))

≤ sup
τ

sup
c>0

(
E [G (|Bτ |)− cτ ]− sup

x∈R

(
G (|x |)− cx2))

≤ sup
τ

(
E [G (|Bτ |)] + sup

c>0

(
−cE[τ ]− sup

x∈R

(
G (|x |)− cx2)))

≤ sup
τ

(
E [G (|Bτ |)]− inf

c>0

(
cE[τ ] + sup

x∈R

(
G (|x |)− cx2))) .
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The optimal stopping problem
Solution

Some consequences

Upper bound for expectation of stopped Brownian motion
Maximal inequalities for randomly stopped Brownian motion

Proposition

If τ is an integrable (Ft)-stopping time, then

E
[
max

0≤t≤τ
Bt

]
≤
√
E[τ ].

The equality is reached for τ = inf{t ≥ 0,St − Bt = a}, for a > 0.

Proof: For t ≥ 0, St := max0≤s≤t Bs .

Define Zt = c
(
(St − Bt)

2 − t
)

+
1
4c

.

(St − Bt) has the same law as |Bt | (Zt)t≥0 is a martingale.
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The optimal stopping problem
Solution

Some consequences

Upper bound for expectation of stopped Brownian motion
Maximal inequalities for randomly stopped Brownian motion

Zt = c
(
(St − Bt)

2 − t
)

+
1
4c

.

Let σ be a bounded (Ft)-stopping time, E[Bσ] = 0,

E[Sσ − cσ] = E[Sσ − Bσ − cσ] ≤ E[Zσ] = E[Z0] =
1
4c
,

using ∀x ∈ R, ∀t ≥ 0, x − ct ≤ c(x2 − t) +
1
4c

and Doob’s
optional stopping theorem.

So E[Sσ] ≤ infc>0

(
1
4c

+ cE[σ]

)

=
√

E[σ]

.

Hence, ∀t ≥ 0, E[St∧τ ] ≤
√

E[t ∧ τ ].

Conclude with monotone convergence theorem.
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Some consequences

Upper bound for expectation of stopped Brownian motion
Maximal inequalities for randomly stopped Brownian motion

Sharpness:
Let a ∈ R, take τ = inf{t ≥ 0,St − Bt = a} which is equal in law
to Ta = inf{t ≥ 0, |Bt | = a}.

E[Sτ ] = a + E[Bτ ] = a

E[τ ] = E[Ta] = a2.

15 / 18



The optimal stopping problem
Solution

Some consequences

Upper bound for expectation of stopped Brownian motion
Maximal inequalities for randomly stopped Brownian motion

Sharpness:
Let a ∈ R, take τ = inf{t ≥ 0,St − Bt = a} which is equal in law
to Ta = inf{t ≥ 0, |Bt | = a}.

E[Sτ ] = a + E[Bτ ] = a

E[τ ] = E[Ta] = a2.

15 / 18



The optimal stopping problem
Solution

Some consequences

Upper bound for expectation of stopped Brownian motion
Maximal inequalities for randomly stopped Brownian motion

Sharpness:
Let a ∈ R, take τ = inf{t ≥ 0,St − Bt = a} which is equal in law
to Ta = inf{t ≥ 0, |Bt | = a}.

E[Sτ ] = a + E[Bτ ] = a

E[τ ] = E[Ta] = a2.

15 / 18



The optimal stopping problem
Solution

Some consequences

Upper bound for expectation of stopped Brownian motion
Maximal inequalities for randomly stopped Brownian motion

Proposition

If τ is an integrable (Ft)-stopping time, then

E
[
max

0≤t≤τ
|Bt |

]
≤
√
2
√
E[τ ].

The equality is reached for
τ2 = inf{t ≥ 0,max0≤s≤t |Bs | − |Bt | = a}, for a > 0.
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Thank you !
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