On Wald-type optimal stopping for Brownian motion

Emeline LUIRARD
supervised by Mihai GRADINARU

$10^{\text {th }}$ January 2019

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space carrying a Brownian motion $\left(B_{t}\right)_{t \geq 0}$. Its canonical filtration $\left(\mathcal{F}_{t}\right)_{t \geq 0}$ is supposed to satisfy the usual conditions.

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space carrying a Brownian motion $\left(B_{t}\right)_{t \geq 0}$. Its canonical filtration $\left(\mathcal{F}_{t}\right)_{t \geq 0}$ is supposed to satisfy the usual conditions.

Optimal stopping problem

Let $G: \mathbb{R}^{+} \rightarrow \mathbb{R}$ be a measurable map, satisfying

$$
\begin{equation*}
\forall x \in \mathbb{R}, \quad G(|x|) \leq c x^{2}+d \tag{1}
\end{equation*}
$$

for some $d \in \mathbb{R}, c>0$.

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space carrying a Brownian motion $\left(B_{t}\right)_{t \geq 0}$. Its canonical filtration $\left(\mathcal{F}_{t}\right)_{t \geq 0}$ is supposed to satisfy the usual conditions.

Optimal stopping problem

Let $G: \mathbb{R}^{+} \rightarrow \mathbb{R}$ be a measurable map, satisfying

$$
\begin{equation*}
\forall x \in \mathbb{R}, \quad G(|x|) \leq c x^{2}+d \tag{1}
\end{equation*}
$$

for some $d \in \mathbb{R}, c>0$.
Goal: maximizing the expectation $\mathbb{E}\left[G\left(\left|B_{\tau}\right|\right)-c \tau\right]$, over all integrable $\left(\mathcal{F}_{t}\right)$-stopping times.

Wald's identity

For all integrable $\left(\mathcal{F}_{t}\right)$-stopping time τ,

$$
\mathbb{E}\left[B_{\tau}^{2}\right]=\mathbb{E}[\tau] .
$$

Wald's identity

For all integrable $\left(\mathcal{F}_{t}\right)$-stopping time τ,

$$
\mathbb{E}\left[B_{\tau}^{2}\right]=\mathbb{E}[\tau] .
$$

Proof:

Wald's identity

For all integrable $\left(\mathcal{F}_{t}\right)$-stopping time τ,

$$
\mathbb{E}\left[B_{\tau}^{2}\right]=\mathbb{E}[\tau]
$$

Proof: Martingale property for $\left(B_{t \wedge \tau}^{2}-t \wedge \tau\right)_{t \geq 0}$:

$$
\forall t \geq 0, \mathbb{E}\left[B_{t \wedge \tau}^{2}\right]=\mathbb{E}[t \wedge \tau]
$$

Wald's identity

For all integrable $\left(\mathcal{F}_{t}\right)$-stopping time τ,

$$
\mathbb{E}\left[B_{\tau}^{2}\right]=\mathbb{E}[\tau]
$$

Proof: Martingale property for $\left(B_{t \wedge \tau}^{2}-t \wedge \tau\right)_{t \geq 0}$:

$$
\forall t \geq 0, \mathbb{E}\left[B_{t \wedge \tau}^{2}\right]=\mathbb{E}[t \wedge \tau]
$$

Doob's inequality: for all $t \geq 0$,

$$
\mathbb{E}\left[\sup _{s \in[0, t]}\left|B_{s \wedge \tau}\right|^{2}\right] \leq 4 \mathbb{E}\left[B_{t \wedge \tau}^{2}\right]
$$

Wald's identity

For all integrable $\left(\mathcal{F}_{t}\right)$-stopping time τ,

$$
\mathbb{E}\left[B_{\tau}^{2}\right]=\mathbb{E}[\tau]
$$

Proof: Martingale property for $\left(B_{t \wedge \tau}^{2}-t \wedge \tau\right)_{t \geq 0}$:

$$
\forall t \geq 0, \mathbb{E}\left[B_{t \wedge \tau}^{2}\right]=\mathbb{E}[t \wedge \tau]
$$

Doob's inequality: for all $t \geq 0$,

$$
\mathbb{E}\left[\sup _{s \in[0, t]}\left|B_{s \wedge \tau}\right|^{2}\right] \leq 4 \mathbb{E}\left[B_{t \wedge \tau}^{2}\right]=4 \mathbb{E}[t \wedge \tau]
$$

Wald's identity

For all integrable $\left(\mathcal{F}_{t}\right)$-stopping time τ,

$$
\mathbb{E}\left[B_{\tau}^{2}\right]=\mathbb{E}[\tau]
$$

Proof: Martingale property for $\left(B_{t \wedge \tau}^{2}-t \wedge \tau\right)_{t \geq 0}$:

$$
\forall t \geq 0, \mathbb{E}\left[B_{t \wedge \tau}^{2}\right]=\mathbb{E}[t \wedge \tau]
$$

Doob's inequality: for all $t \geq 0$,

$$
\mathbb{E}\left[\sup _{s \in[0, t]}\left|B_{s \wedge \tau}\right|^{2}\right] \leq 4 \mathbb{E}\left[B_{t \wedge \tau}^{2}\right]=4 \mathbb{E}[t \wedge \tau] \leq 4 \mathbb{E}[\tau]
$$

Wald's identity

For all integrable $\left(\mathcal{F}_{t}\right)$-stopping time τ,

$$
\mathbb{E}\left[B_{\tau}^{2}\right]=\mathbb{E}[\tau]
$$

Proof: Martingale property for $\left(B_{t \wedge \tau}^{2}-t \wedge \tau\right)_{t \geq 0}$:

$$
\forall t \geq 0, \mathbb{E}\left[B_{t \wedge \tau}^{2}\right]=\mathbb{E}[t \wedge \tau]
$$

Doob's inequality: for all $t \geq 0$,

$$
\mathbb{E}\left[\sup _{s \in[0, t]}\left|B_{s \wedge \tau}\right|^{2}\right] \leq 4 \mathbb{E}\left[B_{t \wedge \tau}^{2}\right]=4 \mathbb{E}[t \wedge \tau] \leq 4 \mathbb{E}[\tau]
$$

So,

$$
\mathbb{E}\left[\sup _{s \geq 0} B_{s \wedge \tau}^{2}\right] \leq 4 \mathbb{E}[\tau]<+\infty
$$

Wald's identity

For all integrable $\left(\mathcal{F}_{t}\right)$-stopping time τ,

$$
\mathbb{E}\left[B_{\tau}^{2}\right]=\mathbb{E}[\tau]
$$

Proof: Martingale property for $\left(B_{t \wedge \tau}^{2}-t \wedge \tau\right)_{t \geq 0}$:

$$
\forall t \geq 0, \mathbb{E}\left[B_{t \wedge \tau}^{2}\right]=\mathbb{E}[t \wedge \tau]
$$

Doob's inequality: for all $t \geq 0$,

$$
\mathbb{E}\left[\sup _{s \in[0, t]}\left|B_{s \wedge \tau}\right|^{2}\right] \leq 4 \mathbb{E}\left[B_{t \wedge \tau}^{2}\right]=4 \mathbb{E}[t \wedge \tau] \leq 4 \mathbb{E}[\tau]
$$

So,

$$
\mathbb{E}\left[\sup _{s \geq 0} B_{s \wedge \tau}^{2}\right] \leq 4 \mathbb{E}[\tau]<+\infty
$$

Thus, $\left(B_{t \wedge \tau}^{2}\right)_{t \geq 0}$ is u.i

Wald's identity

For all integrable $\left(\mathcal{F}_{t}\right)$-stopping time τ,

$$
\mathbb{E}\left[B_{\tau}^{2}\right]=\mathbb{E}[\tau]
$$

Proof: Martingale property for $\left(B_{t \wedge \tau}^{2}-t \wedge \tau\right)_{t \geq 0}$:

$$
\forall t \geq 0, \mathbb{E}\left[B_{t \wedge \tau}^{2}\right]=\mathbb{E}[t \wedge \tau]
$$

Doob's inequality: for all $t \geq 0$,

$$
\mathbb{E}\left[\sup _{s \in[0, t]}\left|B_{s \wedge \tau}\right|^{2}\right] \leq 4 \mathbb{E}\left[B_{t \wedge \tau}^{2}\right]=4 \mathbb{E}[t \wedge \tau] \leq 4 \mathbb{E}[\tau]
$$

So,

$$
\mathbb{E}\left[\sup _{s \geq 0} B_{s \wedge \tau}^{2}\right] \leq 4 \mathbb{E}[\tau]<+\infty
$$

Thus, $\left(B_{t \wedge \tau}^{2}\right)_{t \geq 0}$ is u.i $\rightsquigarrow \mathrm{CV}$ a.s and in L^{1} to B_{τ}^{2}.

Wald's identity

For all integrable $\left(\mathcal{F}_{t}\right)$-stopping time τ,

$$
\mathbb{E}\left[B_{\tau}^{2}\right]=\mathbb{E}[\tau] .
$$

For $c>0, \mathbb{E}\left[B_{\tau}^{2}-c \tau\right]=(1-c) \mathbb{E}[\tau]$.

Wald's identity

For all integrable $\left(\mathcal{F}_{t}\right)$-stopping time τ,

$$
\mathbb{E}\left[B_{\tau}^{2}\right]=\mathbb{E}[\tau] .
$$

For $c>0, \mathbb{E}\left[B_{\tau}^{2}-c \tau\right]=(1-c) \mathbb{E}[\tau]$.

Proposition

$$
\sup _{\tau} \mathbb{E}\left[B_{\tau}^{2}-c \tau\right]= \begin{cases}+\infty & \text { if } c \in] 0,1[\\ 0 & \text { elsewhere }\end{cases}
$$

where the supremum is taken over all integrable $\left(\mathcal{F}_{t}\right)$-stopping times.

Theorem

Let $0<p<2$ and $c>0$, we have,

$$
\sup _{\tau} \mathbb{E}\left[\left|B_{\tau}\right|^{p}-c \tau\right]=\frac{2-p}{p}\left(\frac{p}{2 c}\right)^{p /(2-p)},
$$

where the supremum is taken over all integrable $\left(\mathcal{F}_{t}\right)$-stopping times.
The optimal stopping time is
$\tau_{p, c}=\inf \left\{t \geq 0,\left|B_{t}\right|=\left(\frac{p}{2 c}\right)^{1 /(2-p)}\right\}$.

$$
V_{\tau}(G, c):=\mathbb{E}\left[G\left(\left|B_{\tau}\right|\right)-c \tau\right]=\int_{\mathbb{R}}\left(G(|x|)-c x^{2}\right) d F_{B_{\tau}}(x) .
$$

$V_{\tau}(G, c):=\mathbb{E}\left[G\left(\left|B_{\tau}\right|\right)-c \tau\right]=\int_{\mathbb{R}}\left(G(|x|)-c x^{2}\right) d F_{B_{\tau}}(x)$.
We maximize $D_{G, c}: x \mapsto G(|x|)-c x^{2}$.
$V_{\tau}(G, c):=\mathbb{E}\left[G\left(\left|B_{\tau}\right|\right)-c \tau\right]=\int_{\mathbb{R}}\left(G(|x|)-c x^{2}\right) d F_{B_{\tau}}(x)$.
We maximize $D_{G, c}: x \mapsto G(|x|)-c x^{2}$.

- If $D_{G, c}$ reaches its maximum at $x_{0} \in \mathbb{R}$:
- If $D_{G, c}$ reaches its maximum on $\pm \infty$:
$V_{\tau}(G, c):=\mathbb{E}\left[G\left(\left|B_{\tau}\right|\right)-c \tau\right]=\int_{\mathbb{R}}\left(G(|x|)-c x^{2}\right) d F_{B_{\tau}}(x)$.
We maximize $D_{G, c}: x \mapsto G(|x|)-c x^{2}$.
- If $D_{G, c}$ reaches its maximum at $x_{0} \in \mathbb{R}$:

$$
V_{\tau}(G, c) \leq D_{G, c}\left(x_{0}\right)
$$

- If $D_{G, c}$ reaches its maximum on $\pm \infty$:
$V_{\tau}(G, c):=\mathbb{E}\left[G\left(\left|B_{\tau}\right|\right)-c \tau\right]=\int_{\mathbb{R}}\left(G(|x|)-c x^{2}\right) d F_{B_{\tau}}(x)$.
We maximize $D_{G, c}: x \mapsto G(|x|)-c x^{2}$.
- If $D_{G, c}$ reaches its maximum at $x_{0} \in \mathbb{R}$:

$$
\sup _{\tau} V_{\tau}(G, c) \leq D_{G, c}\left(x_{0}\right),
$$

- If $D_{G, c}$ reaches its maximum on $\pm \infty$:
$V_{\tau}(G, c):=\mathbb{E}\left[G\left(\left|B_{\tau}\right|\right)-c \tau\right]=\int_{\mathbb{R}}\left(G(|x|)-c x^{2}\right) d F_{B_{\tau}}(x)$.
We maximize $D_{G, c}: x \mapsto G(|x|)-c x^{2}$.
- If $D_{G, c}$ reaches its maximum at $x_{0} \in \mathbb{R}$:

$$
\sup _{\tau} V_{\tau}(G, c) \leq D_{G, c}\left(x_{0}\right),
$$

equality with $T_{x_{0}}=\inf \left\{t \geq 0,\left|B_{t}\right|=x_{0}\right\}$.

- If $D_{G, c}$ reaches its maximum on $\pm \infty$:
$V_{\tau}(G, c):=\mathbb{E}\left[G\left(\left|B_{\tau}\right|\right)-c \tau\right]=\int_{\mathbb{R}}\left(G(|x|)-c x^{2}\right) d F_{B_{\tau}}(x)$.
We maximize $D_{G, c}: x \mapsto G(|x|)-c x^{2}$.
- If $D_{G, c}$ reaches its maximum at $x_{0} \in \mathbb{R}$:

$$
\sup _{\tau} V_{\tau}(G, c) \leq D_{G, c}\left(x_{0}\right),
$$

equality with $T_{x_{0}}=\inf \left\{t \geq 0,\left|B_{t}\right|=x_{0}\right\}$.

- If $D_{G, c}$ reaches its maximum on $\pm \infty$: for all $x \in \mathbb{R}$, $D_{G, c}(x) \leq \lim _{x \rightarrow+\infty} D_{G, c}(x)$.
$V_{\tau}(G, c):=\mathbb{E}\left[G\left(\left|B_{\tau}\right|\right)-c \tau\right]=\int_{\mathbb{R}}\left(G(|x|)-c x^{2}\right) d F_{B_{\tau}}(x)$.
We maximize $D_{G, c}: x \mapsto G(|x|)-c x^{2}$.
- If $D_{G, c}$ reaches its maximum at $x_{0} \in \mathbb{R}$:

$$
\sup _{\tau} V_{\tau}(G, c) \leq D_{G, c}\left(x_{0}\right),
$$

equality with $T_{x_{0}}=\inf \left\{t \geq 0,\left|B_{t}\right|=x_{0}\right\}$.

- If $D_{G, c}$ reaches its maximum on $\pm \infty$: for all $x \in \mathbb{R}$, $D_{G, c}(x) \leq \lim _{x \rightarrow+\infty} D_{G, c}(x)$.

$$
V_{\tau}(G, c) \leq \lim _{x \rightarrow+\infty} D_{G, c}(x)
$$

$V_{\tau}(G, c):=\mathbb{E}\left[G\left(\left|B_{\tau}\right|\right)-c \tau\right]=\int_{\mathbb{R}}\left(G(|x|)-c x^{2}\right) d F_{B_{\tau}}(x)$.
We maximize $D_{G, c}: x \mapsto G(|x|)-c x^{2}$.

- If $D_{G, c}$ reaches its maximum at $x_{0} \in \mathbb{R}$:

$$
\sup _{\tau} V_{\tau}(G, c) \leq D_{G, c}\left(x_{0}\right),
$$

equality with $T_{x_{0}}=\inf \left\{t \geq 0,\left|B_{t}\right|=x_{0}\right\}$.

- If $D_{G, c}$ reaches its maximum on $\pm \infty$: for all $x \in \mathbb{R}$, $D_{G, c}(x) \leq \lim _{x \rightarrow+\infty} D_{G, c}(x)$.

$$
\sup _{\tau} V_{\tau}(G, c) \leq \lim _{x \rightarrow+\infty} D_{G, c}(x) .
$$

$V_{\tau}(G, c):=\mathbb{E}\left[G\left(\left|B_{\tau}\right|\right)-c \tau\right]=\int_{\mathbb{R}}\left(G(|x|)-c x^{2}\right) d F_{B_{\tau}}(x)$.
We maximize $D_{G, c}: x \mapsto G(|x|)-c x^{2}$.

- If $D_{G, c}$ reaches its maximum at $x_{0} \in \mathbb{R}$:

$$
\sup _{\tau} V_{\tau}(G, c) \leq D_{G, c}\left(x_{0}\right),
$$

equality with $T_{x_{0}}=\inf \left\{t \geq 0,\left|B_{t}\right|=x_{0}\right\}$.

- If $D_{G, c}$ reaches its maximum on $\pm \infty$: for all $x \in \mathbb{R}$, $D_{G, c}(x) \leq \lim _{x \rightarrow+\infty} D_{G, c}(x)$.

$$
\sup _{\tau} V_{\tau}(G, c) \leq \lim _{x \rightarrow+\infty} D_{G, c}(x) .
$$

With $T_{r}, V_{T_{r}}(G, c)=D_{G, c}(r)$.

$$
D_{G, c}(r) \leq \sup _{\tau} V_{\tau}(G, c) .
$$

$V_{\tau}(G, c):=\mathbb{E}\left[G\left(\left|B_{\tau}\right|\right)-c \tau\right]=\int_{\mathbb{R}}\left(G(|x|)-c x^{2}\right) d F_{B_{\tau}}(x)$.
We maximize $D_{G, c}: x \mapsto G(|x|)-c x^{2}$.

- If $D_{G, c}$ reaches its maximum at $x_{0} \in \mathbb{R}$:

$$
\sup _{\tau} V_{\tau}(G, c) \leq D_{G, c}\left(x_{0}\right),
$$

equality with $T_{x_{0}}=\inf \left\{t \geq 0,\left|B_{t}\right|=x_{0}\right\}$.

- If $D_{G, c}$ reaches its maximum on $\pm \infty$: for all $x \in \mathbb{R}$, $D_{G, c}(x) \leq \lim _{x \rightarrow+\infty} D_{G, c}(x)$.

$$
\sup _{\tau} V_{\tau}(G, c) \leq \lim _{x \rightarrow+\infty} D_{G, c}(x) .
$$

With $T_{r}, V_{T_{r}}(G, c)=D_{G, c}(r)$.

$$
\lim _{r \rightarrow+\infty} D_{G, c}(r) \leq \sup _{\tau} V_{\tau}(G, c) .
$$

Optimality in the first point: $T_{x_{0}}=\inf \left\{t \geq 0,\left|B_{t}\right|=x_{0}\right\}$

$$
V_{T_{x_{0}}}(G, c)=\mathbb{E}\left[G\left(\left|B_{T_{x_{0}}}\right|\right)-c B_{T_{x_{0}}}^{2}\right]
$$

Optimality in the first point: $T_{x_{0}}=\inf \left\{t \geq 0,\left|B_{t}\right|=x_{0}\right\}$

$$
\begin{aligned}
V_{T_{x_{0}}}(G, c) & =\mathbb{E}\left[G\left(\left|B_{T_{x_{0}}}\right|\right)-c B_{T_{x_{0}}}^{2}\right] \\
& =D_{G, c}\left(-x_{0}\right) \mathbb{P}\left(B_{T_{x_{0}}}=-x_{0}\right)+D_{G, c}\left(x_{0}\right) \mathbb{P}\left(B_{T_{x_{0}}}=x_{0}\right)
\end{aligned}
$$

Optimality in the first point: $T_{x_{0}}=\inf \left\{t \geq 0,\left|B_{t}\right|=x_{0}\right\}$

$$
\begin{aligned}
V_{T_{x_{0}}}(G, c) & =\mathbb{E}\left[G\left(\left|B_{T_{x_{0}}}\right|\right)-c B_{T_{x_{0}}}^{2}\right] \\
& =D_{G, c}\left(-x_{0}\right) \mathbb{P}\left(B_{T_{x_{0}}}=-x_{0}\right)+D_{G, c}\left(x_{0}\right) \mathbb{P}\left(B_{T_{x_{0}}}=x_{0}\right) \\
& =D_{G, c}\left(x_{0}\right) .
\end{aligned}
$$

Theorem

The solution to our optimal stopping problem is

$$
\sup _{\tau} \mathbb{E}\left[G\left(\left|B_{\tau}\right|\right)-c \tau\right]=\sup _{x \in \mathbb{R}}\left(G(|x|)-c x^{2}\right),
$$

where the supremum is taken over all integrable $\left(\mathcal{F}_{t}\right)$-stopping times.
When $D_{G, c}$ reaches a maximum on \mathbb{R}, the optimal stopping time $\tau_{G, c}=\inf \left\{t \geq 0,\left|B_{t}\right|=\operatorname{argmax} D_{G, c}\right\}$.

Theorem

The solution to our optimal stopping problem is

$$
\sup _{\tau} \mathbb{E}\left[G\left(\left|B_{\tau}\right|\right)-c \tau\right]=\sup _{x \in \mathbb{R}}\left(G(|x|)-c x^{2}\right),
$$

where the supremum is taken over all integrable $\left(\mathcal{F}_{t}\right)$-stopping times.
When $D_{G, c}$ reaches a maximum on \mathbb{R}, the optimal stopping time $\tau_{G, c}=\inf \left\{t \geq 0,\left|B_{t}\right|=\operatorname{argmax} D_{G, c}\right\}$.

Example: $G: x \mapsto \ln (x)$

$D: x \mapsto \ln (|x|)-c x^{2}$ reaches a maximum at $\pm \frac{1}{\sqrt{2 c}}$.

$$
\sup _{\tau} \mathbb{E}\left[\ln \left(\left|B_{\tau}\right|\right)-c \tau\right]=-\frac{1}{2}(\ln (2 c)+1)
$$

Proposition

For all integrable $\left(\mathcal{F}_{t}\right)$-stopping time τ, if $\left.p \in\right] 0,2[$,

$$
\mathbb{E}\left[\left|B_{\tau}\right|^{p}\right] \leq \mathbb{E}[\tau]^{p / 2} .
$$

Proposition

For all integrable $\left(\mathcal{F}_{t}\right)$-stopping time τ, if $\left.p \in\right] 0,2[$,

$$
\mathbb{E}\left[\left|B_{\tau}\right|^{p}\right] \leq \mathbb{E}[\tau]^{p / 2} .
$$

Proof: For all $c>0, \mathbb{E}\left[\left|B_{\tau}\right|^{p}\right] \leq c \mathbb{E}[\tau]+\frac{2-p}{p}\left(\frac{p}{2 c}\right)^{p /(2-p)}$.

Proposition

For all integrable $\left(\mathcal{F}_{t}\right)$-stopping time τ, if $\left.p \in\right] 0,2[$,

$$
\mathbb{E}\left[\left|B_{\tau}\right|^{p}\right] \leq \mathbb{E}[\tau]^{p / 2} .
$$

Proof: For all $c>0, \mathbb{E}\left[\left|B_{\tau}\right|^{p}\right] \leq c \mathbb{E}[\tau]+\frac{2-p}{p}\left(\frac{p}{2 c}\right)^{p /(2-p)}$. Then

$$
\mathbb{E}\left[\left|B_{\tau}\right|^{p}\right] \leq \inf _{c>0}\left(c \mathbb{E}[\tau]+\frac{2-p}{p}\left(\frac{p}{2 c}\right)^{p /(2-p)}\right)
$$

Proposition

For all integrable $\left(\mathcal{F}_{t}\right)$-stopping time τ, if $\left.p \in\right] 0,2[$,

$$
\mathbb{E}\left[\left|B_{\tau}\right|^{p}\right] \leq \mathbb{E}[\tau]^{p / 2} .
$$

Proof: For all $c>0, \mathbb{E}\left[\left|B_{\tau}\right|^{p}\right] \leq c \mathbb{E}[\tau]+\frac{2-p}{p}\left(\frac{p}{2 c}\right)^{p /(2-p)}$.
Then

$$
\mathbb{E}\left[\left|B_{\tau}\right|^{p}\right] \leq \inf _{c>0}\left(c \mathbb{E}[\tau]+\frac{2-p}{p}\left(\frac{p}{2 c}\right)^{p /(2-p)}\right)
$$

Let $f: c \mapsto c \mathbb{E}[\tau]+\frac{2-p}{p}\left(\frac{p}{2 c}\right)^{p /(2-p)} . f$ reaches a minimum at
$\frac{p}{2} \mathbb{E}[\tau]^{(p-2) / 2}$ and $f\left(\frac{p}{2} \mathbb{E}[\tau]^{(p-2) / 2}\right)=\mathbb{E}[\tau]^{p / 2}$.

Samely,

Theorem

For all integrable $\left(\mathcal{F}_{t}\right)$-stopping time τ,

$$
\mathbb{E}\left[G\left(\left|B_{\tau}\right|\right)\right] \leq \inf _{c>0}\left(c \mathbb{E}[\tau]+\sup _{x \in \mathbb{R}}\left(G(|x|)-c x^{2}\right)\right)
$$

Samely,

Theorem

For all integrable $\left(\mathcal{F}_{t}\right)$-stopping time τ,

$$
\mathbb{E}\left[G\left(\left|B_{\tau}\right|\right)\right] \leq \inf _{c>0}\left(c \mathbb{E}[\tau]+\sup _{x \in \mathbb{R}}\left(G(|x|)-c x^{2}\right)\right) .
$$

Example: $G: x \mapsto \ln (x)$

$g: c \mapsto c \mathbb{E}[\tau]-\frac{1}{2}(\ln (2 c)+1)$ reaches a minimum at $c=\frac{1}{2 \mathbb{E}[\tau]}$.
For all integrable $\left(\mathcal{F}_{t}\right)$-stopping time τ,

$$
\mathbb{E}\left[\ln \left(\left|B_{\tau}\right|\right)\right] \leq \frac{1}{2} \ln (\mathbb{E}[\tau])
$$

Samely,

Theorem

For all integrable $\left(\mathcal{F}_{t}\right)$-stopping time τ,

$$
\mathbb{E}\left[G\left(\left|B_{\tau}\right|\right)\right] \leq \inf _{c>0}\left(c \mathbb{E}[\tau]+\sup _{x \in \mathbb{R}}\left(G(|x|)-c x^{2}\right)\right)
$$

Optimality

If that there exists $c_{0}>0$ such that $D_{G, c_{0}}: x \mapsto G(|x|)-c_{0} x^{2}$ reaches a maximum over \mathbb{R}, then

$$
\sup _{\tau}\left(\mathbb{E}\left[G\left(\left|B_{\tau}\right|\right)\right]-\inf _{c>0}\left(c \mathbb{E}[\tau]+\sup _{x \in \mathbb{R}}\left(G(|x|)-c x^{2}\right)\right)\right)=0
$$

where the supremum is taken over all integrable $\left(\mathcal{F}_{t}\right)$-stopping times.

Proof: Call $a_{G, c}$ a point where $D_{G, c}$ reaches its maximum (possibly infinite) over $\overline{\mathbb{R}}, \sigma_{c}=\inf \left\{t \geq 0,\left|B_{t}\right|=a_{G, c}\right\}$.

Proof: Call $a_{G, c}$ a point where $D_{G, c}$ reaches its maximum (possibly infinite) over $\overline{\mathbb{R}}, \sigma_{c}=\inf \left\{t \geq 0,\left|B_{t}\right|=a_{G, c}\right\}$.

$$
0=\mathbb{E}\left[G\left(\left|B_{\sigma_{0}}\right|\right)-c_{0} \sigma_{c_{0}}\right]-\sup _{x \in \mathbb{R}}\left(G(|x|)-c_{0} x^{2}\right)
$$

Proof: Call $a_{G, c}$ a point where $D_{G, c}$ reaches its maximum (possibly infinite) over $\overline{\mathbb{R}}, \sigma_{c}=\inf \left\{t \geq 0,\left|B_{t}\right|=a_{G, c}\right\}$.

$$
\begin{aligned}
0 & =\mathbb{E}\left[G\left(\left|B_{\sigma_{0}}\right|\right)-c_{0} \sigma_{c_{0}}\right]-\sup _{x \in \mathbb{R}}\left(G(|x|)-c_{0} x^{2}\right) \\
& \leq \sup _{c>0}\left(\mathbb{E}\left[G\left(\left|B_{\sigma_{0}}\right|\right)-c \sigma_{c_{0}}\right]-\sup _{x \in \mathbb{R}}\left(G(|x|)-c x^{2}\right)\right)
\end{aligned}
$$

Proof: Call $a_{G, c}$ a point where $D_{G, c}$ reaches its maximum (possibly infinite) over $\overline{\mathbb{R}}, \sigma_{c}=\inf \left\{t \geq 0,\left|B_{t}\right|=a_{G, c}\right\}$.

$$
\begin{aligned}
0 & =\mathbb{E}\left[G\left(\left|B_{\sigma_{0}}\right|\right)-c_{0} \sigma_{c_{0}}\right]-\sup _{x \in \mathbb{R}}\left(G(|x|)-c_{0} x^{2}\right) \\
& \leq \sup _{c>0}\left(\mathbb{E}\left[G\left(\left|B_{\sigma_{0}}\right|\right)-c \sigma_{c_{0}}\right]-\sup _{x \in \mathbb{R}}\left(G(|x|)-c x^{2}\right)\right) \\
& \leq \sup _{\tau} \sup _{c>0}\left(\mathbb{E}\left[G\left(\left|B_{\tau}\right|\right)-c \tau\right]-\sup _{x \in \mathbb{R}}\left(G(|x|)-c x^{2}\right)\right)
\end{aligned}
$$

Proof: Call $a_{G, c}$ a point where $D_{G, c}$ reaches its maximum (possibly infinite) over $\overline{\mathbb{R}}, \sigma_{c}=\inf \left\{t \geq 0,\left|B_{t}\right|=a_{G, c}\right\}$.

$$
\begin{aligned}
0 & =\mathbb{E}\left[G\left(\left|B_{\sigma_{c_{0}}}\right|\right)-c_{0} \sigma_{c_{0}}\right]-\sup _{x \in \mathbb{R}}\left(G(|x|)-c_{0} x^{2}\right) \\
& \leq \sup _{c>0}\left(\mathbb{E}\left[G\left(\left|B_{\sigma_{c_{0}} \mid}\right|\right)-c \sigma_{c_{0}}\right]-\sup _{x \in \mathbb{R}}\left(G(|x|)-c x^{2}\right)\right) \\
& \leq \sup _{\tau} \sup _{c>0}\left(\mathbb{E}\left[G\left(\left|B_{\tau}\right|\right)-c \tau\right]-\sup _{x \in \mathbb{R}}\left(G(|x|)-c x^{2}\right)\right) \\
& \leq \sup _{\tau}\left(\mathbb{E}\left[G\left(\left|B_{\tau}\right|\right)\right]+\sup _{c>0}\left(-c \mathbb{E}[\tau]-\sup _{x \in \mathbb{R}}\left(G(|x|)-c x^{2}\right)\right)\right)
\end{aligned}
$$

Proof: Call $a_{G, c}$ a point where $D_{G, c}$ reaches its maximum (possibly infinite) over $\overline{\mathbb{R}}, \sigma_{c}=\inf \left\{t \geq 0,\left|B_{t}\right|=a_{G, c}\right\}$.

$$
\begin{aligned}
0 & =\mathbb{E}\left[G\left(\left|B_{\sigma_{c_{0}}}\right|\right)-c_{0} \sigma_{c_{0}}\right]-\sup _{x \in \mathbb{R}}\left(G(|x|)-c_{0} x^{2}\right) \\
& \leq \sup _{c>0}\left(\mathbb{E}\left[G\left(\left|B_{\sigma_{c_{0}} \mid}\right|\right)-c \sigma_{c_{0}}\right]-\sup _{x \in \mathbb{R}}\left(G(|x|)-c x^{2}\right)\right) \\
& \leq \sup _{\tau} \sup _{c>0}\left(\mathbb{E}\left[G\left(\left|B_{\tau}\right|\right)-c \tau\right]-\sup _{x \in \mathbb{R}}\left(G(|x|)-c x^{2}\right)\right) \\
& \leq \sup _{\tau}\left(\mathbb{E}\left[G\left(\left|B_{\tau}\right|\right)\right]+\sup _{c>0}\left(-c \mathbb{E}[\tau]-\sup _{x \in \mathbb{R}}\left(G(|x|)-c x^{2}\right)\right)\right) \\
& \leq \sup _{\tau}\left(\mathbb{E}\left[G\left(\left|B_{\tau}\right|\right)\right]-\inf _{c>0}\left(c \mathbb{E}[\tau]+\sup _{x \in \mathbb{R}}\left(G(|x|)-c x^{2}\right)\right)\right) .
\end{aligned}
$$

Proposition

If τ is an integrable $\left(\mathcal{F}_{t}\right)$-stopping time, then

$$
\mathbb{E}\left[\max _{0 \leq t \leq \tau} B_{t}\right] \leq \sqrt{\mathbb{E}[\tau]} .
$$

The equality is reached for $\tau=\inf \left\{t \geq 0, S_{t}-B_{t}=a\right\}$, for $a>0$.

Proposition

If τ is an integrable $\left(\mathcal{F}_{t}\right)$-stopping time, then

$$
\mathbb{E}\left[\max _{0 \leq t \leq \tau} B_{t}\right] \leq \sqrt{\mathbb{E}[\tau]} .
$$

The equality is reached for $\tau=\inf \left\{t \geq 0, S_{t}-B_{t}=a\right\}$, for $a>0$.
Proof: For $t \geq 0, S_{t}:=\max _{0 \leq s \leq t} B_{s}$.
Define $Z_{t}=c\left(\left(S_{t}-B_{t}\right)^{2}-t\right)+\frac{1}{4 c}$.

Proposition

If τ is an integrable $\left(\mathcal{F}_{t}\right)$-stopping time, then

$$
\mathbb{E}\left[\max _{0 \leq t \leq \tau} B_{t}\right] \leq \sqrt{\mathbb{E}[\tau]}
$$

The equality is reached for $\tau=\inf \left\{t \geq 0, S_{t}-B_{t}=a\right\}$, for $a>0$.
Proof: For $t \geq 0, S_{t}:=\max _{0 \leq s \leq t} B_{s}$.
Define $Z_{t}=c\left(\left(S_{t}-B_{t}\right)^{2}-t\right)+\frac{1}{4 c}$.
$\left(S_{t}-B_{t}\right)$ has the same law as $\left|B_{t}\right| \rightsquigarrow\left(Z_{t}\right)_{t \geq 0}$ is a martingale.

$Z_{t}=c\left(\left(S_{t}-B_{t}\right)^{2}-t\right)+\frac{1}{4 c}$.

Let σ be a bounded $\left(\mathcal{F}_{t}\right)$-stopping time, $\mathbb{E}\left[B_{\sigma}\right]=0$,

$$
Z_{t}=c\left(\left(S_{t}-B_{t}\right)^{2}-t\right)+\frac{1}{4 c} .
$$

Let σ be a bounded $\left(\mathcal{F}_{t}\right)$-stopping time, $\mathbb{E}\left[B_{\sigma}\right]=0$,

$$
\mathbb{E}\left[S_{\sigma}-c \sigma\right]=
$$

$$
Z_{t}=c\left(\left(S_{t}-B_{t}\right)^{2}-t\right)+\frac{1}{4 c} .
$$

Let σ be a bounded $\left(\mathcal{F}_{t}\right)$-stopping time, $\mathbb{E}\left[B_{\sigma}\right]=0$,

$$
\mathbb{E}\left[S_{\sigma}-c \sigma\right]=\mathbb{E}\left[S_{\sigma}-B_{\sigma}-c \sigma\right]
$$

$Z_{t}=c\left(\left(S_{t}-B_{t}\right)^{2}-t\right)+\frac{1}{4 c}$.

Let σ be a bounded $\left(\mathcal{F}_{t}\right)$-stopping time, $\mathbb{E}\left[B_{\sigma}\right]=0$,

$$
\mathbb{E}\left[S_{\sigma}-c \sigma\right]=\mathbb{E}\left[S_{\sigma}-B_{\sigma}-c \sigma\right] \leq \mathbb{E}\left[Z_{\sigma}\right]
$$

using $\forall x \in \mathbb{R}, \forall t \geq 0, x-c t \leq c\left(x^{2}-t\right)+\frac{1}{4 c}$

$$
Z_{t}=c\left(\left(S_{t}-B_{t}\right)^{2}-t\right)+\frac{1}{4 c}
$$

Let σ be a bounded $\left(\mathcal{F}_{t}\right)$-stopping time, $\mathbb{E}\left[B_{\sigma}\right]=0$,

$$
\mathbb{E}\left[S_{\sigma}-c \sigma\right]=\mathbb{E}\left[S_{\sigma}-B_{\sigma}-c \sigma\right] \leq \mathbb{E}\left[Z_{\sigma}\right]=\mathbb{E}\left[Z_{0}\right]=\frac{1}{4 c}
$$

using $\forall x \in \mathbb{R}, \forall t \geq 0, x-c t \leq c\left(x^{2}-t\right)+\frac{1}{4 c}$ and Doob's optional stopping theorem.

$$
Z_{t}=c\left(\left(S_{t}-B_{t}\right)^{2}-t\right)+\frac{1}{4 c}
$$

Let σ be a bounded $\left(\mathcal{F}_{t}\right)$-stopping time, $\mathbb{E}\left[B_{\sigma}\right]=0$,

$$
\mathbb{E}\left[S_{\sigma}-c \sigma\right]=\mathbb{E}\left[S_{\sigma}-B_{\sigma}-c \sigma\right] \leq \mathbb{E}\left[Z_{\sigma}\right]=\mathbb{E}\left[Z_{0}\right]=\frac{1}{4 c}
$$

using $\forall x \in \mathbb{R}, \forall t \geq 0, x-c t \leq c\left(x^{2}-t\right)+\frac{1}{4 c}$ and Doob's optional stopping theorem.
So $\mathbb{E}\left[S_{\sigma}\right] \leq \inf _{c>0}\left(\frac{1}{4 c}+c \mathbb{E}[\sigma]\right)$

$$
Z_{t}=c\left(\left(S_{t}-B_{t}\right)^{2}-t\right)+\frac{1}{4 c}
$$

Let σ be a bounded $\left(\mathcal{F}_{t}\right)$-stopping time, $\mathbb{E}\left[B_{\sigma}\right]=0$,

$$
\mathbb{E}\left[S_{\sigma}-c \sigma\right]=\mathbb{E}\left[S_{\sigma}-B_{\sigma}-c \sigma\right] \leq \mathbb{E}\left[Z_{\sigma}\right]=\mathbb{E}\left[Z_{0}\right]=\frac{1}{4 c},
$$

using $\forall x \in \mathbb{R}, \forall t \geq 0, x-c t \leq c\left(x^{2}-t\right)+\frac{1}{4 c}$ and Doob's optional stopping theorem.
So $\mathbb{E}\left[S_{\sigma}\right] \leq \inf _{c>0}\left(\frac{1}{4 c}+c \mathbb{E}[\sigma]\right)=\sqrt{\mathbb{E}[\sigma]}$.
$Z_{t}=c\left(\left(S_{t}-B_{t}\right)^{2}-t\right)+\frac{1}{4 c}$.
Let σ be a bounded $\left(\mathcal{F}_{t}\right)$-stopping time, $\mathbb{E}\left[B_{\sigma}\right]=0$,

$$
\mathbb{E}\left[S_{\sigma}-c \sigma\right]=\mathbb{E}\left[S_{\sigma}-B_{\sigma}-c \sigma\right] \leq \mathbb{E}\left[Z_{\sigma}\right]=\mathbb{E}\left[Z_{0}\right]=\frac{1}{4 c}
$$

using $\forall x \in \mathbb{R}, \forall t \geq 0, x-c t \leq c\left(x^{2}-t\right)+\frac{1}{4 c}$ and Doob's optional stopping theorem.
So $\mathbb{E}\left[S_{\sigma}\right] \leq \inf _{c>0}\left(\frac{1}{4 c}+c \mathbb{E}[\sigma]\right)=\sqrt{\mathbb{E}[\sigma]}$.
Hence, $\forall t \geq 0, \mathbb{E}\left[S_{t \wedge \tau}\right] \leq \sqrt{\mathbb{E}[t \wedge \tau]}$.
$Z_{t}=c\left(\left(S_{t}-B_{t}\right)^{2}-t\right)+\frac{1}{4 c}$.
Let σ be a bounded $\left(\mathcal{F}_{t}\right)$-stopping time, $\mathbb{E}\left[B_{\sigma}\right]=0$,

$$
\mathbb{E}\left[S_{\sigma}-c \sigma\right]=\mathbb{E}\left[S_{\sigma}-B_{\sigma}-c \sigma\right] \leq \mathbb{E}\left[Z_{\sigma}\right]=\mathbb{E}\left[Z_{0}\right]=\frac{1}{4 c}
$$

using $\forall x \in \mathbb{R}, \forall t \geq 0, x-c t \leq c\left(x^{2}-t\right)+\frac{1}{4 c}$ and Doob's optional stopping theorem.
So $\mathbb{E}\left[S_{\sigma}\right] \leq \inf _{c>0}\left(\frac{1}{4 c}+c \mathbb{E}[\sigma]\right)=\sqrt{\mathbb{E}[\sigma]}$.
Hence, $\forall t \geq 0, \mathbb{E}\left[S_{t \wedge \tau}\right] \leq \sqrt{\mathbb{E}[t \wedge \tau]}$.

Conclude with monotone convergence theorem.

Sharpness:
Let $a \in \mathbb{R}$, take $\tau=\inf \left\{t \geq 0, S_{t}-B_{t}=a\right\}$ which is equal in law to $T_{a}=\inf \left\{t \geq 0,\left|B_{t}\right|=a\right\}$.

Sharpness:
Let $a \in \mathbb{R}$, take $\tau=\inf \left\{t \geq 0, S_{t}-B_{t}=a\right\}$ which is equal in law to $T_{a}=\inf \left\{t \geq 0,\left|B_{t}\right|=a\right\}$.

$$
\mathbb{E}\left[S_{\tau}\right]=a+\mathbb{E}\left[B_{\tau}\right]=a
$$

Sharpness:
Let $a \in \mathbb{R}$, take $\tau=\inf \left\{t \geq 0, S_{t}-B_{t}=a\right\}$ which is equal in law to $T_{a}=\inf \left\{t \geq 0,\left|B_{t}\right|=a\right\}$.

$$
\mathbb{E}\left[S_{\tau}\right]=a+\mathbb{E}\left[B_{\tau}\right]=a
$$

$$
\mathbb{E}[\tau]=\mathbb{E}\left[T_{a}\right]=a^{2}
$$

Proposition

If τ is an integrable $\left(\mathcal{F}_{t}\right)$-stopping time, then

$$
\mathbb{E}\left[\max _{0 \leq t \leq \tau}\left|B_{t}\right|\right] \leq \sqrt{2} \sqrt{\mathbb{E}[\tau]}
$$

The equality is reached for $\tau_{2}=\inf \left\{t \geq 0, \max _{0 \leq s \leq t}\left|B_{s}\right|-\left|B_{t}\right|=a\right\}$, for $a>0$.

Thank you !

Bibliography

[GP] S.E. GRAVERSEN, G. PESKIR. On Wald-type optimal stopping for Brownian motion. Journal of Applied Probability 34 (1997), p. 66-73.
[DSS] L. DUBINS, L. SHEPP, A. SHYRIAEV. Optimal stopping rules and maximal inequalities for Bessel processes. Theory of Probability and its Applications 38 (1993), p. 226-261.
[RZ] D. REVUZ, M. YOR. Continuous martingales and brownian motion, Springer, $3^{\text {rd }}$ edition, 1999.
[KS] I. KARATZAS, S.E. SHREVE. Brownian motion and stochastic calculus, Springer-Verlag, $2^{\text {nd }}$ edition, 1988.

