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Let (22, F,P) be a probability space carrying a Brownian motion
(Bt)t>0. Its canonical filtration (F;)¢>0 is supposed to satisfy the
usual conditions.

Optimal stopping problem

Let G : R™ — R be a measurable map, satisfying
Vx €R, G(|x|) < ex® +d, (1)

for some d € R, ¢ > 0.
Goal: maximizing the expectation E [G(|B;|) — c7], over all
integrable (F;)-stopping times.
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An important case G : |x| — x?
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An important case G |x| — x
Solution Case G : |x| — [x|P,0< p <2
General case

Wald's identity

For all integrable (F:)-stopping time T,

E [B?] = E[7].
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An important case G |x| — x
Solution Case G : |x| — [x|P,0< p <2
General case

Wald's identity

For all integrable (F:)-stopping time T,

E [B?] = E[7].

For ¢ >0, E [BZ — c7] = (1 — ¢)E[7].

Proposition

+oo if ¢ €]0,1],
elsewhere,

supE [Bf —c7] = { 0

where the supremum is taken over all integrable (F;)-stopping
times.
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An important case G : |x
Solution Case G : |x| — |x|P, 0 < p < 2

General case

Theorem
Let 0 < p< 2 andc >0, we have,

2—p / p\P/(2-p)
SwpE (18,7~ er] = =F (57) ,

where the supremum is taken over all integrable (F;)-stopping
times.
The optimal stopping time is

1/(2—
Tp,c:inf{tzo,wt\ - (=) t ”)}.
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An important case G : |x| — x2
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Solution Case G : |x| — |x
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An important case ( |x| — x2
Solution Case G: |x| — |x|P,0< p<2

General case

Theorem

The solution to our optimal stopping problem is
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where the supremum is taken over all integrable (F;)-stopping
times.

When D¢ . reaches a maximum on R, the optimal stopping time
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An important case G : |x| — x2
Solution Case G: |x| — |x|P,0< p<2

General case

Theorem

The solution to our optimal stopping problem is

sng [G(|B-|) — c7] = zgﬂg(GﬂxD — o),

where the supremum is taken over all integrable (F;)-stopping
times.

When D¢ . reaches a maximum on R, the optimal stopping time
7G,c = inf {t >0, |B;| = argmax D¢ }.

Example: G : x — In(x)

1
D : x +— In(|x|) — cx? reaches a maximum at +——.

V2c

supE fin( ) — e7] = —%(ln(2c) +1).

N
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Upper bound for expectation of stopped Brownian motion

Maximal inequalities for randomly stopped Brownian motion
Some consequences ?

Proposition

For all integrable (F;)-stopping time 7, if p €]0,2],

E[|B,|"] < E[-]"/
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Proof: For all ¢ > 0, E[|B;|"] < cE[r] + 2pp (ﬁ)p/( p).

2c
Then

: 2—p / p\P/(2-p)
p < — | =
E[|B|P] < CII;‘E) <CIE[T] + ) <2c) > .

2 — /(2—p)
i (£>p P . f reaches a minimum at

Let £ : E —
e c— cE[r] + > \ac

Pri(p—2)/2 PRiA(P-2/2) = R[1P/2
SE[7] and f(zm;[T] ) E[r]P/2.
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Maximal inequalities for randomly stopped Brownian motion
Some consequences ?

Samely,

Theorem

For all integrable (F;)-stopping time T,

E[G(18.))] < inf (cEm +sup(G(b) - cx2>) |

A\

Example: G : x — In(x)

1 1
g:c— cE[r] — 5(|n(2c) + 1) reaches a minimum at ¢ = [
For all integrable (F;)-stopping time 7,
1
E{in(|B-[)] < 5 In (E[7]).

A
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Upper bound for expectation of stopped Brownian motion

Maximal inequalities for randomly stopped Brownian motion
Some consequences ?

Samely,

Theorem

For all integrable (F;)-stopping time T,

B[6(8,)] < jnf (calr] + sun(G(x) - o))

Optimality

If that there exists co > 0 such that Dg ¢, : x — G(|x|) — cox?
reaches a maximum over R, then

sup (E1G(18,)] - inf (B[] + sun(G(1x)) - o)) ) <o

where the supremum is taken over all integrable (F;)-stopping
times.

A
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Upper bound for expectation of stopped Brownian motion
Maximal inequalities for randomly stopped Brownian motion

Some consequences

Proof: Call ag . a point where Dg . reaches its maximum (possibly
infinite) over R, o = inf{t >0, |B| = ag.c}
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Upper bound for expectation of stopped Brownian motion
Maximal inequalities for randomly stopped Brownian motion
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Proof: For t > 0, S; := maxg<s<¢ Bs.
) 1
Define Z; = ¢ ((St - B:)? — t) + i
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Zt = C((St - Bt)2 - t) + E
Let o be a bounded (F;)-stopping time, E[B,] =0,

E[S, — co] = E[S, — B, — co] < E[Z,] = E[Z,] = lec

1

using Vx € R, Vt >0, x —ct < c(x®> — t) + i and Doob’s
c

optional stopping theorem.

So E[S,] < infeso <41C + CE[0]> — JE[.

Hence, Vt > 0, E[Sin-] < VE[t A T].

Conclude with monotone convergence theorem.
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Let a € R, take 7 = inf{t > 0,S; — B; = a} which is equal in law
to T, =inf{t > 0,|B¢| = a}.
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E[r] = E[T.] = &°.
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Some consequences

If T is an integrable (F;)-stopping time, then

e | o 81 < V2VER]

The equality is reached for
1o = inf{t > 0, maxo<s<¢ |Bs| — |Bt| = a}, for a> 0.
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Thank you !
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